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Incomplete Gamma Kernels: Generalizing
Locally Optimal Projection Operators

Patrick Stotko, Michael Weinmann, and Reinhard Klein

Abstract—We present incomplete gamma kernels, a generalization of Locally Optimal Projection (LOP) operators. In particular, we
reveal the relation of the classical localized L1 estimator, used in the LOP operator for point cloud denoising, to the common Mean
Shift framework via a novel kernel. Furthermore, we generalize this result to a whole family of kernels that are built upon the incomplete
gamma function and each represents a localized Lp estimator. By deriving various properties of the kernel family concerning
distributional, Mean Shift induced, and other aspects such as strict positive definiteness, we obtain a deeper understanding of the
operator’s projection behavior. From these theoretical insights, we illustrate several applications ranging from an improved Weighted
LOP (WLOP) density weighting scheme and a more accurate Continuous LOP (CLOP) kernel approximation to the definition of a novel
set of robust loss functions. These incomplete gamma losses include the Gaussian and LOP loss as special cases and can be applied
to various tasks including normal filtering. Furthermore, we show that the novel kernels can be included as priors into neural networks.
We demonstrate the effects of each application in a range of quantitative and qualitative experiments that highlight the benefits induced
by our modifications.

Index Terms—Kernels, Locally Optimal Projection, Mean Shift, point clouds, point cloud denoising, projection operators, robust loss
functions, surface reconstruction, theory

✦

1 INTRODUCTION

D IGITAL 3D scene models have become a crucial pre-
requisite for numerous applications in entertainment,

advertisement, design, architecture, autonomous systems,
and cultural heritage. In this context, the accurate digiti-
zation of real-world objects and scenes is of great relevance
and offers new opportunities regarding a variety of tasks
including AR/VR-based inspection and collecting realistic
training data for tasks in robotics, autonomous driving,
aerial or satellite surveys. Aside from professional scanning
campaigns with expensive laser scanning equipment, there
has also been an increasing trend towards more practical
scene capture with consumer-grade hardware such as pas-
sive purely image-based scene scanning using Structure-
from-Motion and Multi-view Stereo approaches, or with
respective cheaper active time-of-flight depth sensors that
have meanwhile even been integrated into numerous mo-
bile devices. However, the use of passive scene scanning or
active scanning based on cheap hardware with low sensor
quality and low sensor resolution induces noise in the
capture process and thereby results in noisy point clouds
and a low number of points that might not preserve finer
geometric details, which, in turn, may lead to artifacts
in the registration and subsequent surface reconstruction
procedures. Furthermore, the limited accessibility of capture
conditions as well as occlusions induce holes and highly
irregular samplings and distributions of the captured data.
These challenges result in an increasing interest in robust
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filtering techniques that are capable of handling noise, out-
liers, registration artifacts, as well as irregularly-sampled
and missing data and can provide a clean, denoised, and
uniformly resampled point cloud suitable for high-fidelity
surface reconstruction.

Among others, the Locally Optimal Projection (LOP)
operator [1] has gained a lot of attention in recent years
due to its benefit of not relying on a well-defined sur-
face parametrization or a piecewise planar approximation
and, meanwhile, there has been a whole series of further
extensions of this approach [2], [3], [4], [5]. Furthermore,
many learning-based approaches also aim at projecting the
noisy data onto a (latent) denoised manifold [6], [7]. There-
fore, investigations towards the unification of traditional
approaches with their respective regularization techniques
might be of great relevance for future learning-based ap-
proaches as well. Even further, traditional techniques, and
particularly those approaches that incorporate probabilistic
modeling of the data such as the density-based Mean Shift
clustering method [8], [9], [10], become more and more
relevant in modern deep learning methods. Besides their
application to structure the latent space representation of
the data within encoder-decoder approaches [11], there is
even a direct relation between the Mean Shift approach and
denoising autoencoders [12]. In particular, as the output of
an optimal denoising autoencoder corresponds to the local
mean of the true data density [13], the autoencoder loss can
be interpreted as a Mean Shift vector [12]. However, to the
best of our knowledge, this observation has not yet been
explored in the context of point cloud denoising. Hence,
relating traditional concepts to modern deep learning meth-
ods might not only lead to a more explainable behavior
of the latter but also allow increasing the resulting perfor-
mance. In turn, this relies on the better understanding of the
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Fig. 1. Relation between LOP and Mean Shift in the example of the 2D Fish model. Minimizing the localized L1 attraction energy with the Gaussian
kernel KGaussian (left) results in the same trajectory q(t) as applying Mean Shift on a global kernel density estimate with the kernel KLOP (right).

relationship between previous (traditional) techniques.
In this paper, we investigate the theoretical relationship

of projection-based point cloud denoising approaches with
their respective properties and show that these are unified
within the common probabilistic Mean Shift framework. In
particular, the key contributions of our work are:

• We reveal the relation of the classical localized L1

estimator used in LOP to the Mean Shift framework
via a novel kernel KLOP and introduce the family
of incomplete gamma kernels KΓ as a generalization of
this result where each kernel represents a localized
Lp estimator (see Section 3).

• We derive various properties of the kernel family
concerning distributional, Mean Shift induced, and
other aspects such as strict positive definiteness to
obtain a deeper understanding of the operator’s pro-
jection behavior (see Section 4).

• We demonstrate that leveraging the derived theoreti-
cal insights enables several applications including an
improved Weighted LOP (WLOP) density weighting
scheme, a more accurate Continuous LOP (CLOP)
kernel approximation, the derivation of incomplete
gamma losses, a set of novel robust loss functions, as
well as neural network priors (see Section 5).

In our evaluation, we demonstrate the benefits induced
by our modifications in a range of quantitative and qual-
itative experiments. Furthermore, the theoretical insights
of our investigations with their proven effect may be of
great relevance also for future learning-based approaches.
The source code is available at https://github.com/stotko/
incomplete-gamma-kernels.

2 RELATED WORK

In the following, we provide a review of geometric and
learning-based denoising approaches. Furthermore, we also
review seminal work regarding the theory and application
of the Mean Shift framework due to its relationship to LOP
approaches that we will demonstrate later.

2.1 Geometric Denoising Approaches
Following early approaches such as the local fitting of tan-
gent planes [14] or using radial basis functions [15], respec-

tive developments particularly focused on projection-based
methods, sparsity-based methods and non-local methods.

Projection-based Methods. These approaches rely on
the assumption of an underlying smooth surface and the
projection of noisy data points onto the estimated local
surface. For this purpose, respective approaches apply mov-
ing least squares (MLS) based methods [16], [17], [18],
[19], robust principal component analysis (RPCA) [20] and
moving robust principal component analysis (MRPCA) [21],
or locally optimal projection based operators where the
LOP operator [1] has been extended in terms of Weighted
LOP (WLOP) [2], Feature LOP (FLOP) [3], Continuous LOP
(CLOP) [5], Edge-Aware Resampling (EAR) [4] and a Gaus-
sian mixture model inspired projection operator [22]. The
latter has been demonstrated to be capable of resampling
point clouds while preserving features due to the additional
guidance of filtered normals.

Sparsity-based Methods. This class of approaches re-
lies on the assumption that objects can be represented in
terms of piecewise smooth surfaces with sparse features.
Respective denoising techniques include L0-norm [23], [24]
and L1-norm minimization [21], [25], [26], sparse dictionary
learning [27] as well as patch-based or feature-based graph
Laplacian regularization [28], [29], [30], graph-based point
cloud denoising based on jointly leveraging geometry and
color information [31], guided filtering based on normal
information followed by a L1-medial skeleton extraction to
get the sharp structure of the surface [32] as well as lever-
aging gravitational feature functions [33]. In the context of
denoising dynamic point clouds, Hu et al. [34] explored the
temporal coherence of spatio-temporal graphs with respect
to the underlying surface, where a respective manifold-to-
manifold distance has been introduced. Furthermore, data-
driven exemplar priors have been used for surface recon-
struction [35], where the sparsity of local shapes from a
collection of 3D objects has been explored.

Non-local Methods. In contrast to the previous classes,
these approaches rely on the assumption that geomet-
ric statistics are (approximately) shared by certain surface
patches of a 3D model, i.e. local surface denoising is con-
ducted based on collected neighborhoods with similar ge-
ometry [36], [37], [38], [39]. However, the definition of a suit-
able metric as well as the regular representation of local sur-
face structures remain challenging. Furthermore, density-
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based point cloud denoising has been approached by first
applying particle-swarm based optimization for kernel den-
sity estimation followed by a Mean Shift clustering-based
outlier removal and a final bilateral mesh filtering [40].

2.2 Learning-based Denoising Approaches
Recent works more and more leverage deep learning for
point cloud denoising as well as surface reconstruction
from point clouds. Examples include approaches for point
cloud consolidation and resampling such as PointNet [41],
PointNet++ [42], patch-based progressive point cloud up-
sampling [43] as well as the unification of the considerations
of densifying, denoising and completing point clouds [44].
Other approaches followed the principles of initially project-
ing the points onto coarse-level local reference planes and
applying a subsequent refinement [45] or the initial removal
of outliers before conducting the denoising [46]. Further ap-
proaches include edge-aware point cloud consolidation [47],
adversarial defense [48], graph-convolutional methods [49],
unsupervised approaches such as Total Denoising [50], gra-
dient field based denoising [51], [52], [53], differentiable
approaches [54], [55], [56] as well as manifold learning
based on encoder-decoder architectures [6], [7]. Non-local
self-similarities have also been considered to define neu-
ral self-priors that capture geometric repetitions [57], cap-
ture semantically related non-local features [58], or apply
self-correction by allowing the model to capture struc-
tural and contextual information from initially disorganized
parts [59]. Furthermore, normalizing flows have been ap-
plied to the learn the distribution of noisy points and
disentangle noise from the latent space [60]. In addition,
the feature-aware recurrent point cloud denoising network
(RePCD-Net) [61] combines a recurrent network architecture
for noise removal with multi-scale feature aggregation and
propagation and a feature-aware Chamfer distance loss.

2.3 Mean Shift Approaches
The Mean Shift approach [8] is a well-studied local mode-
seeking method with diverse applications including data
clustering [9], [10], [62], [63], image filtering [10], segmenta-
tion [10], [64], denoising [12], [65], and object tracking [64].
Tremendous effort has been spent to study its convergence
behavior [9], [10], [66], [67], [68], [69] which culminated
in a rigorous set of properties proven by Yamasaki and
Tanaka [70]. Recently, Mean Shift clustering has also been
applied in the latent space of neural encoder-decoder ap-
proaches to achieve a better structured data representa-
tion [11]. Furthermore, the connection between the Mean
Shift approach and denoising autoencoders [71] has been
revealed by Bigdeli et al. [12], who leveraged the observation
that the output of an optimal denoising autoencoder (DAE)
is a local mean of the true data density [13] to show that that
the autoencoder loss is a Mean Shift vector and to use the
respective magnitude to define a prior for image restoration.

3 BACKGROUND

Before deriving our proposed kernel family as a generaliza-
tion of LOP in the context of Mean Shift, we first provide a
brief introduction into the concepts of both approaches.

3.1 Mean Shift

The basic objective of Mean Shift [8] is to find the modes of
a probabilistic distribution f which has been observed by
a (sparse) set of points P = {pi ∈ Rd} in a d-dimensional
vector space. Due to this abstract formulation, it has been
applied to various computer vision problems by choosing
an appropriate application-specific feature space, e.g. the
L∗u∗v∗ color space for image filtering or segmentation [10].
In order to analyze the unknown distribution f at any point
q ∈ Rd, it is modeled by a kernel density estimate:

f̂P,K(q) =
1

|P|hd

∑
i

K(pi−q
h ) (1)

Here, h denotes the kernel window size and K a kernel that
is non-negative (K(x) ≥ 0), normalized (

∫
Rd K(x) dx = 1),

and radially symmetric (K(x) = cK k(∥x∥2)). The
1-dimensional function k defined in the symmetry
constraint, where cK denotes a normalization constant, is
called the kernel profile of K and plays an important role
in the analysis of Mean Shift [70]. Furthermore, the gradient
of the kernel density estimate

∇f̂P,K(q) =
2

|P|hd+2

cK
cG

∑
i

G(pi−q
h ) (pi − q) (2)

can be derived using the kernel G(x) = cG g(∥x∥2) with
the normalization constant cG and its corresponding profile
g(x) = − d

dxk(x). Based on these two functions, the main
component of the algorithm for finding the modes is the
Mean Shift vector [10]

mP,G(q) =
h2

2

cG
cK

∇f̂P,K(q)

f̂P,G(q)
=

∑
i G(pi−q

h ) (pi − q)∑
i G(pi−q

h )
(3)

which describes the gradient vector normalized with respect
to the kernel G. In particular, it directly determines the up-
dated point at each time step t by the corresponding fixed-
point iteration q(t+1) = q(t) +mP,G(q

(t)) which performs
gradient ascent on the kernel density estimate f̂P,K .

3.2 Locally Optimal Projection

Unlike approaches that are based on the probabilistic con-
cept of Mean Shift to tackle various different computer
vision tasks, the problem of denoising point clouds has also
been of great relevance for the computer graphics commu-
nity. Many advanced solutions have been independently de-
veloped there, especially methods leveraging the robust L1

median. To efficiently compute the unique global solution
in these median-based formulations, the iterative Weiszfeld
algorithm [72] has become a popular and commonly used
choice. Specifically, it also marks the foundation of LOP [1]
as a robust localized 3D projection operator. Given a set
of noisy 3D target points P = {pi ∈ R3} sampled from a
smooth surface S , the task here consists in projecting and
uniformly distributing an independent set of 3D points
Q = {qj ∈ R3} onto the unknown surface S which is de-
fined by the observations P only. This can be expressed in
terms of an energy formulation

E(Q) =
∑
j

ELOP(qj) + Erep(qj) (4)
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based on an attraction and a repulsion term

ELOP(qj) =
∑
i

θ(∥pi − q
(t)
j ∥) ∥pi − qj∥ (5)

Erep(qj) = λj

∑
i,i ̸=j

θ(∥q(t)
i − q

(t)
j ∥) η(∥q(t)

i − qj∥) (6)

where θ(x) = e−x2/(h/4)2 denotes a compact localization
kernel and η a decreasing regularization function penal-
izing small distances between projection points to en-
sure a uniform distribution of the projected points. Com-
mon choices of η include the originally proposed function
ηLOP(x) = 1/(3x3) [1] as well as the less rapidly decreasing
function ηWLOP(x) = −x [2]. Both energy terms are bal-
anced by weights λj which are chosen such that they only
depend on a single, global parameter µ ∈ [0, 1/2). Based on
the Weiszfeld algorithm, the solution to this optimization
problem can be obtained by the fixed-point iteration

q
(t+1)
j =

∑
i α(∥pi − q

(t)
j ∥)pi∑

i α(∥pi − q
(t)
j ∥)

+ µ

∑
i,i ̸=j β(∥q

(t)
i − q

(t)
j ∥) (q(t)

j − q
(t)
i )∑

i,i ̸=j β(∥q
(t)
i − q

(t)
j ∥)

(7)

with kernels α(x) = θ(x)/x and β(x) = θ(x)/x
∣∣ d
dxη(x)

∣∣.
3.3 Generalization via Incomplete Gamma Kernels
Although Mean Shift and Locally Optimal Projection have
been separately developed from different contexts and
mathematical concepts with the aim of solving a distinct
problem, we can link both approaches by rewriting the
update step in (7):

q
(t+1)
j = q

(t)
j +mP,GLOP

(q
(t)
j )− µmQ(t)

j ,Grep
(q

(t)
j ) (8)

This reveals that the LOP operator is a combination of
two Mean Shift steps in the 3D space: 1) a standard Mean
Shift with respect to the target set P and GLOP being the
normalized kernel α; and 2) a reverse applied Blurring Mean
Shift [9] where the Mean Shift vector is instead subtracted
and computed from the shifted and, in turn, blurred source
set Q(t)

j = Q(t) \{q(t)
j } as well as from the kernel Grep

corresponding to the normalized kernel β. Therefore, we can
interpret the localized L1 attraction energy minimization
with a Gaussian kernel in (5) as a maximization of a global
kernel density estimate (1) with respect to a different kernel
KLOP. An example of this relation is shown in Fig. 1.

To derive KLOP as part of a novel kernel fam-
ily KΓ for the general case of the Rd space, we con-
sider the 1-dimensional profile of the involved kernel

GLOP, i.e. α in (7), which resembles a gamma distribu-
tion fΓ(x |a, b) ∝ xa−1 e−x/b with support x ∈ (0,∞) and
parameters a > 0, b > 0. The profile of the actual ker-
nel then resembles the distribution F̄Γ(x |a, b) ∝ Γ(a, x/b)
which is the complementary CDF of fΓ and based on the
upper incomplete gamma function Γ(a, x) =

∫∞
x ta−1 e−t dt.

Therefore, the d-dimensional kernel has the general form
KΓ(x |a, b) = cKΓ Γ(a, ∥x∥2/b).

Since we also need to compute the respective normal-
ization constant cKΓ , we switch the integration domain to
spherical coordinates and substitute s = r2/b:

1

cKΓ

=

∫
Rd

Γ(a, ∥x∥2

b ) dx =

∫
Ω

∫ ∞

0
Γ(a, r2

b ) r
d−1 dr dΩ

=
b

d
2

2

[∫
Ω
dΩ

] [∫ ∞

0
Γ(a, s) s

d
2−1 ds

]
(9)

Due to radial symmetry, both integrals can be solved
independently. The former one describes the surface
area of the d-dimensional unit sphere Ω and has the
closed form

∫
Ω dΩ = 2πd/2/Γ(d/2). Using the relation∫∞

0 Γ(a, x)xb−1 dx = Γ(a+ b)/b [73], we get an expres-
sion for the latter one in terms of the ordinary gamma
function. We can also apply the recursive relation of
the gamma function Γ(a+ 1) = aΓ(a) and conclude that
1/cKΓ

= (πb)d/2 Γ(d/2 + a)/Γ(d/2 + 1).
Finally, we change the parametrization by setting

a = p/2, b = 2σ2 to obtain the final kernel:

KΓ(x |p, σ2) =
1

(2πσ2)
d
2

Γ(d+2
2 )

Γ(d+p
2 )

Γ(p2 ,
∥x∥2

2σ2 ) (10)

These incomplete gamma kernels span a family of Mean
Shift kernels corresponding to Lp estimators of the at-
traction energy localized by a Gaussian kernel. An im-
portant special case of this family is the LOP kernel for
which we choose p = 1, σ2 = 1/32 and apply the identity
Γ(1/2, x) =

√
π erfc(

√
x) to get

KLOP(x) =
4d

π
d−1
2

Γ(d+2
2 )

Γ(d+1
2 )

erfc(4 ∥x∥) (11)

where erfc denotes the complementary error function. Another
special case is the corresponding Gaussian kernel KGaussian

obtained by setting p = 2 which is a common choice in
Mean Shift and has been extensively analyzed as the lo-
calized L2 estimator of the geometric mean. Fig. 2 shows an
interpolation between these kernels by varying the p-norm.

p = 1 p = 1.25 p = 1.5 p = 1.75 p = 2

KΓ(x |p, σ2)KLOP KGaussian

Fig. 2. Interpolation between 2D incomplete gamma kernels KΓ with varying p ∈ [1, 2] and fixed σ2 = 1/32. Each kernel corresponds to a localized
attraction energy minimization with the respective p-norm.
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TABLE 1
Properties of Incomplete Gamma Kernels KΓ(x |p, σ2) in Rd for p > 0

D
is

tr
ib

ut
io

n Mean 0

Covariance d+p
d+2

σ2 I

Characteristic function 1F1(
d+p
2

, d+2
2

,−σ2∥ω∥2
2

)

Moment-generating function 1F1(
d+p
2

, d+2
2

,
σ2∥ω∥2

2
)

M
ea

n
Sh

if
t Differentiable profile ✓ except for x = 0 if p ∈ (0, 2)

Strictly decreasing profile ✓

Convex profile ✓ for p ∈ (0, 2]

Analytic ✓

Bounded ✓

O
th

er Completely monotonic profile ✓ for p ∈ (0, 2]

Strictly positive definite ✓ for p ∈ (0, 2]

4 KERNEL PROPERTIES

In the following, we derive several theoretical properties of
the family of incomplete gamma kernels in Rd which are
summarized in Table 1 and later leveraged in the applica-
tions (see Section 5).

4.1 Characteristic Function and Fourier Transform

Feature preservation is a highly relevant aspect in the devel-
opment of denoising approaches (see Fig. 4) and will later
be taken into account in the definition of density weighting
schemes (see Section 5.1), loss functions (see Section 5.3),
and neural network priors (see Section 5.4). In order to
gain a deeper understanding of the proposed kernel family
KΓ in this context, we are interested in its characteristic
function φΓ(ω) which can also be interpreted as the Fourier
transform F of KΓ at the angular frequency ω ∈ Rd.

First, we can apply the relation between the
d-dimensional Fourier transform of a radially symmetric
function f(x) in terms of the Hankel transform of order
d/2− 1 of the function ∥x∥d/2−1

f(∥x∥) [74] to reduce the
dimensionality of the integral to the radial component

φΓ(ω) = F
[
KΓ(x |p, σ2)

]
(ω) =

∫
Rd

KΓ(x |p, σ2) ei⟨ω|x⟩ dx

= cKΓ

(2π)
d
2

∥ω∥ d
2−1

∫ ∞

0
Γ(p2 ,

r2

2σ2 ) J d
2−1(∥ω∥ r) r d

2 dr

(12)

where Jq(x) denotes the Bessel function of the first kind of
order q. This integral has the closed-form solution (see the
Appendix for a more detailed derivation):

cKΓ

(2π)
d
2

∥ω∥ d
2−1

∫ ∞

0
Γ(p2 ,

r2

2σ2 ) J d
2−1(∥ω∥ r) r d

2 dr

= cKΓ
(2πσ2)

d
2
Γ(d+p

2 )

Γ(d+2
2 )

1F1(
d+p
2 , d+2

2 ,−σ2∥ω∥2

2 )

= 1F1(
d+p
2 , d+2

2 ,−σ2∥ω∥2

2 ) (13)

Therefore, the characteristic function of the incomplete
gamma kernel can be written in terms of the confluent
hypergeometric function of the first kind 1F1. Fig. 3 shows a
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x
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2

3 K
(x
)

−30 0 30

ω0
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1

F
[K

](
ω
)KLOP

KGaussian

Difference

F−1

F

Fig. 3. Comparison of LOP and Gaussian kernels in spatial and fre-
quency domain. Filtering with the LOP kernel KLOP better preserves
higher frequency information.

comparison between the Gaussian kernel (p = 2) and the
LOP kernel (p = 1) both in spatial and in frequency domain.

If we consider the special case 1F1(a, a, x) = ex, we can
observe that this result is consistent with the Fourier trans-
form of the Gaussian kernel. Furthermore as d → ∞, the
entire family of localized Lp kernel estimators converges to
the L2 estimator since distances become increasingly similar
in higher dimensions due to the curse of dimensionality.

4.2 Moment-generating Function

Another closely related and useful quantity to consider
is the moment-generating function MΓ of the kernel KΓ

which can be used to compute its mean vector µΓ ∈ Rd

and its covariance matrix ΣΓ ∈ Rd×d. Especially the insights
about the magnitude of ΣΓ are crucial to define consistent
density weights (see Section 5.1) and an accurate CLOP
approximation (see Section 5.2). Although there is a direct
connection to the characteristic function in terms of

MΓ(ω) = φΓ(−iω) = 1F1(
d+p
2 , d+2

2 , σ2∥ω∥2

2 ) (14)

it does not necessarily exist in general, so we have to prove
this property for all ω ∈ Rd. For this purpose, we repeatedly
apply the comparison theorem of calculus to derive finite
bounds of the integral. We first observe that MΓ(ω) > 0
since the integrand consisting of KΓ and an exponential
term is positive. To obtain an upper bound of MΓ, we switch
to spherical coordinates and bound cos(∠(ω,x)) ≤ 1, where
∠(ω,x) denotes the angle between ω and x, to decouple the
radial component from the angular one:

MΓ(ω) =

∫
Rd

KΓ(x |p, σ2) e⟨ω|x⟩ dx

= cKΓ

∫
Ω

∫ ∞

0
Γ(p2 ,

r2

2σ2 ) r
d−1 e∥ω∥r cos(∠(ω,x)) dr dΩ

≤ c1

∫ ∞

0
Γ(p2 ,

r2

2σ2 ) r
d−1 e∥ω∥r dr

(15)

For brevity, we put finite terms into constants ci. Next, we
combine the two individual upper bounds

Γ(a, x) ≤
{
a xa−1 e−x, a ∈ [1,∞), x ∈ [a,∞) [75]
xa−1 e−x, a ∈ (0, 1], x ∈ (0,∞) (partial int.)

(16)
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and apply them after splitting the integral at
r0 = max(1, p/2). Furthermore, we simplify the expression
by completing the square in the exponential term:

c1

∫ ∞

0
Γ(p2 ,

r2

2σ2 ) r
d−1 e∥ω∥r dr

≤ c1 c2 + c1

∫ ∞

r0

r0 (
r2

2σ2 )
p
2−1 e−

r2

2σ2 rd−1 e∥ω∥r dr

= c1 c2 + c1 c3

∫ ∞

r0

rp+d−3 e−
(r−σ2∥ω∥)2

2σ2 dr (17)

Since r ∈ [1,∞), the remaining polynomial can be bound
by a higher order k = max(0, ⌈p+ d− 3⌉) ∈ N0. Therefore,
this integral describes the (incomplete) k-th raw moment of
a 1D normal distribution and is finite for any k ∈ N0 which,
in turn, proves that MΓ(ω) < ∞ exists.

4.2.1 Mean
We can now use the moment-generating function MΓ to
directly compute all raw moments of the kernel KΓ by
evaluating the respective derivative at ω = 0. For the mean
vector µΓ ∈ Rd of KΓ, we consider the first-order derivative

∂

∂ω
MΓ(ω) = d+p

d+2 σ
2

1F1(
d+p+2

2 , d+4
2 , σ2∥ω∥2

2 )ω (18)

and get µΓ = ∂
∂ωMΓ(0) = 0 as the expected result for a

radially symmetric kernel.

4.2.2 Covariance
Similarly, we compute the second-order derivative

∂2

∂ω ∂ωT
MΓ(ω) = d+p

d+2 σ
2
[
1F1(

d+p+2
2 , d+4

2 , σ2∥ω∥2

2 ) I

+ d+p+2
d+4 σ2

1F1(
d+p+4

2 , d+6
2 , σ2∥ω∥2

2 )ωωT
]

(19)

and obtain the covariance matrix ΣΓ ∈ Rd×d of the kernel
KΓ using the first-order and second-order raw moments as
ΣΓ = ∂2

∂ω ∂ωTMΓ(0)− µΓµ
T
Γ = [(d+ p)/(d+ 2)]σ2 I.

4.3 Mean Shift Properties

In addition to the distribution-specific properties above, we
can get further insights into the kernel family by exploiting
the comprehensive theory that has been developed for the
Mean Shift algorithm [70]. This requires proving several ad-
ditional properties including that the kernel KΓ is bounded
and analytic and that its profile kΓ is differentiable, strictly
decreasing, and convex.

4.3.1 Differentiability, Monotonicity and Convexity
In order to show that the profile is strictly decreasing, we
consider its first-order derivative

d

dx
kΓ(x |p, σ2) =

d

dx
Γ(p2 ,

x
2σ2 ) = −( 1

2σ2 )
p
2 x

p
2−1 e−

x
2σ2

(20)
which is defined for all x ∈ (0,∞) as well as for x = 0 if
p ∈ [2,∞). Since the involved polynomial and exponential
terms are always positive, it follows that the derivative
must be negative, that is d

dxkΓ(x |p, σ2) < 0, and the profile
strictly decreasing.

Similarly, we see that the second-order derivative is
given by

d2

dx2
kΓ(x |p, σ2) =

d

dx
kΓ(x |p, σ2)

[ p
2 − 1

x
− 1

2σ2

]
(21)

where, in order to ensure that d2

dx2 kΓ(x |p, σ2) > 0, the latter
term must be non-positive which is equivalent to the condi-
tion x ≥ (p− 2)σ2. Since this should hold for all x ∈ (0,∞),
convexity is only guaranteed for kernels with p ∈ (0, 2]
which, in particular, includes the Gaussian kernel (p = 2)
as well as the LOP kernel (p = 1).

4.3.2 Boundedness and Analyticity
Instead of showing the properties of boundedness and ana-
lyticity for the kernel KΓ itself, it is sufficient to show them
for its profile kΓ. Since kΓ is non-negative and monotonically
decreasing, we only have to consider the case x = 0. For this
value, Γ(a, x) reduces to the gamma function Γ(a) which
is finite for a > 0. Furthermore, analyticity directly follows
from the fact that Γ(a, x) is holomorphic in x ∈ (0,∞) for
any fixed a > 0.

4.3.3 Consequences for the LOP operator
The aforementioned properties have several direct implica-
tions [70] on the behavior of the LOP operator (with zero
repulsion) as well as to Mean Shift applied with the incom-
plete gamma kernel KΓ for p ∈ (0, 2]. With the exception
of the finite set of target points P where singularities are
introduced in the kernel GΓ, the following properties hold:

Non-zero Gradient. The gradient of the kernel density
estimate ∇f̂P,KΓ in (2) is non-zero outside the convex hull
of the target point set P . This implies that all solutions must
lie within the convex hull.

Plateau-free Density. In addition to non-zero gradients,
the kernel density estimate on the set Rd \P has no plateaus.
Since the set of target points P is finite, we can extend this
property to the full space Rd.

Non-decreasing Density Estimate. Another interest-
ing subset to consider is the improvement ball I(q(t)

j )
which denotes a d-dimensional sphere centered at the point
q
(t)
j +mP,GΓ

(q
(t)
j ) with radius ∥mP,GΓ

(q
(t)
j )∥. In case of

the LOP operator, it follows that all points x within the
improvement ball have non-decreasing kernel density es-
timates f̂P,KΓ(x) ≥ f̂P,KΓ(q

(t)
j ).

Convergence of Density Estimate Sequence. As a con-
sequence of the above property, the sequence of kernel den-
sity estimates {f̂P,KΓ

(q(t))} obtained via the fixed-point it-
eration q(t+1) = q(t) +mP,GΓ

(q(t)) is non-decreasing. Fur-
thermore, this sequence always converges.

Convergence of Mode Estimate Sequence. Finally, we
can conclude that the mode estimate sequence {q(t)} con-
verges to a single point. Depending on the window size
h and the distribution of the target points P , this solution
could be either a point p ∈ P due to the singularity (for very
small window sizes) or a different point p ∈ Rd \P in the
corresponding convex hull (for larger window sizes). While
a proof for the convergence of a modified version of LOP
in Rd has only been shown very recently [76], this provides
an alternative way through the comprehensive Mean Shift
theory which, though only considering the attraction term,
extends and generalizes to all kernels KΓ with p ∈ (0, 2].
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Noisy p → 0 p = 0.5 p = 1 p = 1.5 p = 2 Original

KΓ(x |p, σ2)

Fig. 4. Exemplary point cloud denoising of the Elephant model (302 458 points) with 30 WLOP [2] iterations (h = 6, µ = 0.4) for different incomplete
gamma kernels KΓ using varying p ∈ (0, 2] and fixed σ2 = 1/32. The model has been corrupted with σnoise = 0.3 (80% points) and σoutlier = 1.5
Gaussian noise (20% points) respectively to account for both typical sensor noise and heavy outliers. Higher p-norms result in more regular but
oversmoothed point distributions whereas lower values better preserve features. Unit of h, σnoise, σoutlier: [% BB diagonal].

4.4 Further Properties
Besides the theoretical results concerning basic distribution-
related aspects as well as insights in the projection behavior
of LOP from the perspective of Mean Shift, we want to
derive further properties and, in particular, strict positive
definiteness. This opens up a broader set of applications
beyond improved density weights (see Section 5.1) and
may also be relevant, e.g., in the field of Gaussian Process
Regression, which, however is out of the scope of this work.

4.4.1 Complete Monotonicity
For this purpose, we show that the kernel profile kΓ is
completely monotonic, that is (−1)n dn

dxn kΓ(x |p, σ2) ≥ 0 for
all n ∈ N0 and x ∈ (0,∞). From the derivation of the Mean
Shift properties, we already know that kΓ(x |p, σ2) > 0 and
d
dxkΓ(x |p, σ2) < 0 holds for all x ∈ (0,∞). Since xa with
a ≤ 0 as well as e−x are both completely monotonic and
the product of two completely monotonic functions retains
that property [77], we can conclude that this also holds for
kΓ(x |p, σ2) with p ∈ (0, 2].

4.4.2 Strict Positive Definiteness
A direct consequence of the complete monotonicity of its
profile is that the kernel KΓ is a positive definite function.
Furthermore, since the profile is also not a constant function,
KΓ must be even strictly postive definite [78]. Therefore, for
any set of distinct points P , the matrix

C =
(
KΓ(pi − pj |p, σ2)

)
ij
∈ R|P|×|P| (22)

is symmetric and positive definite for p ∈ (0, 2], so it can be
interpreted as a Gram matrix and any linear system with re-
spect to C has a unique solution which can be computed by,
e.g., conjugate gradient solvers. This also directly extends to
any truncated version of KΓ where the matrix C becomes
sparse and more efficient to solve as vanishing derivatives
of the truncated profile do not affect complete monotonicity.

5 APPLICATIONS

Besides the application of other localized Lp estimators for
point cloud denoising via the incomplete gamma kernels
KΓ, as shown in Fig. 4, we illustrate several further appli-
cations to demonstrate the benefits of the theoretical results
derived for the kernel family.

5.1 WLOP Density Weights

In addition to a high robustness to noise, another crucial
requirement in point cloud denoising is a uniform distribu-
tion of the denoised points. Although the introduction of
an additional repulsion energy (6) mitigates the clustering
effect of the attraction term (5), the projection is still highly
dependent on the distribution of the target points P . This
has been addressed in WLOP [2] by computing weights
vi for each target point pi and v

(t)
j for each projection

point q
(t)
j as an additional regularization based on the

reciprocal and ordinary density value respectively with the
(unnormalized) localization kernel θ. However, our derived
theoretical properties reveal two major limitations of this
particular choice: 1) Although the Gaussian localization
kernel θ could be considered a reasonable approximation of
the actual kernel KLOP given in (11), it significantly differs
in terms of the frequency spectrum (see Section 4.1 and
Fig. 3) as well as covariance (see Section 4.2) and leads
to oversmoothing of high-frequency density information
and, hence, a lacking preservation of fine-scale details; 2)
taking the reciprocal to invert the density of pi ignores the
dependencies between the weights which corresponds to
the assumption of constant density in a window of size h. In
order to achieve a more accurate normalization, we propose
two novel weighting schemes.

Simple Scheme. A simple extension to the WLOP
weights keeps the assumption of the latter limitation and
addresses only the former one by applying the actual kernel
KLOP, that is estimating the weights

vi =
1

f̂P,KLOP
(pi)

, v
(t)
j = f̂Q(t),KLOP

(q
(t)
j ) (23)

via the kernel density estimate (1) of the point clouds P and
Q(t) respectively. This scheme can be easily integrated into
existing applications of WLOP as it only involves a different
kernel function in the overall weight computation.

Full Scheme. To address both limitations, we consider
the kernel density estimate f̂P,KLOP

with weights vi applied
to each term. We want to enforce constant density at the
points pi which can be formulated as a linear optimization
problem in matrix form:

1

|P|hd

(
KLOP(

pi−pj

h )
)
ij
(. . . , vi, . . . )

T = 1 (24)
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TABLE 2
Parameter Sets of Kernel Approximation K̂LOP

CLOP [5] Ours Ours (Consistent)

k ŵk σ̂k ŵk σ̂k ŵk σ̂k

1 97.761 0.01010 61.509 0.02102 46.409 0.03118
2 29.886 0.03287 11.932 0.07289 9.635 0.10582

3 11.453 0.11772 5.069 0.15700 2.674
√

1/32

This corresponds to radial basis function (RBF) interpolation
with a Gram matrix similar to (22) and we can obtain a
unique solution since KLOP is strictly positive definite (see
Section 4.4). Furthermore, we truncate the kernel at h/2 to
drastically reduce the memory requirements of the matrix
and use a sparse conjugate gradient solver. In case of the
projection points q(t)

j , we consider the inverse of the matrix
which leads to the same weights as in the simple scheme.

5.2 CLOP Kernel Approximation
While the major aspect of ensuring a uniform distribution of
the projected point set can be addressed with an appropriate
weighting as shown in Section 5.1, obtaining these results ef-
ficiently becomes challenging especially on large datasets as
all target points P will be taken into account for denoising.
For this purpose, CLOP [5] first computes a more compact
representation of the points P in terms of a smaller set
of normal distributions PN = {(wi,µi,Σi)} with weights
wi ∈ R, mean vectors µi ∈ R3, and local covariance matrices
Σi ∈ R3×3 and then extends the discrete attraction energy
to the continuous space. However, since the integral in the
respective update step cannot be directly solved, the kernel
α(∥x∥) is approximated by a radially symmetric Gaussian
mixture model α̂(x) = (1/h)

∑3
k=1 ŵk ĉk N (x/h |0, σ̂2

k I)
consisting of three components with fitted parameters
{(ŵk, σ̂k) ∈ R× R} and dimension-dependent constants
ĉk = |2πσ̂2

k I|1/2. In the context of Mean Shift, this implies
that the kernel GLOP is in fact approximated which directly
allows us to derive

K̂LOP(x) =

∑3
k=1 σ̂

2
k ŵk ĉk N (x |0, σ̂2

k I)∑3
k=1 σ̂

2
k ŵk ĉk

(25)

as an approximation of the kernel KLOP in Rd with the same
set of fitted parameters {(ŵk, σ̂k)}.

Kernel Fit. Finding the optimal parameter set is highly
challenging due to the singularity of GLOP at x = 0 and,
thereby, the unbounded ratio between the smallest and
largest sampling value in the half-open fitting interval (0, 1]
for h = 1. In contrast, we directly optimize on the kernel
KLOP which does not suffer from these limitations. We fix
the parameter w3 = 1 to constrain the remaining degree
of freedom and obtain the solution from 107 uniformly
sampled points in the interval [0, 1] via the Levenberg-
Marquardt algorithm (see Table 2). Although the LOP op-
erator is scale-invariant in terms of the kernel α, we never-
theless estimate a global scaling factor for the weights ŵk via
Levenberg-Marquardt optimization in the interval (0.01, 1]
for a better comparability with CLOP.

Consistent Fit. In addition to the derivation of the kernel
approximation K̂LOP, we can futher apply the insights

about the covariance of KLOP (see Section 4.2). From (25),
we can also see that the covariance matrix Σ̂LOP ∈ Rd×d of
the approximation consists of a convex combination of the
parameters σ̂2

k:

Σ̂LOP =

∑3
k=1 ŵk σ̂

d+4
k∑3

k=1 ŵk σ̂
d+2
k

I (26)

In the limit d → ∞, this combination degenerates to
Σ̂LOP → maxk σ̂

2
k I which is similar to the maximum norm

L∞ being the limit of the Lp norms. Therefore, we
can enforce an additional consistency constraint in the
parameter optimization process by fixing the parameter
σ̂3 =

√
1/32 such that Σ̂LOP matches the expected covari-

ance ΣLOP = 1/32 [(d+ 1)/(d+ 2)] I → 1/32 I.

5.3 Robust Loss Functions
A closely related, yet slightly different task is mesh denois-
ing where the quality of the noisy vertex set (similar to
point sets in point cloud denoising) should be improved
while preserving the mesh connectivity and avoiding self-
intersections of the faces. Respective approaches tackle this
problem in a two-stage approach where the face normals
are initially denoised and subsequently used as a guidance
in the second stage to consistently adjust the vertex posi-
tions. Obtaining a reliable estimate of a denoised normal
n ∈ R3 can be performed by leveraging gradient descent or
M-estimation from the broad field of robust statistics [79]
which is also related to the concept of anisotropic diffu-
sion [80]. Here, the objective function

L(n) =
∑
i

ρ(∥ni − n∥) (27)

defined with a robust loss function ρ is considered and a
solution can be found based on the corresponding influence
function Ψ(x) = d

dxρ(x) and anisotropic weight function
g̃(x) = Ψ(x)/x [81]:

n(t+1) =

∑
i g̃(∥ni − n(t)∥)n(t)∥∥∑
i g̃(∥ni − n(t)∥)n(t)

∥∥ (28)

This result is closely related to the derivation of Mean
Shift and shares many properties with it [10]. While the
Gaussian loss is a well-known choice in this context, we
can generalize it to the family of incomplete gamma losses
along with the respective influence and anisotropic weight

−1 0 1

x
0

1

ρ(x)

−1 0 1

x

−1

0

1

Ψ(x)

−1 0 1

x
0

2

g̃(x)

L2 L1 Gaussian LOP

1Fig. 5. Comparison of LOP and Gaussian M-estimators for σ2 = 1/2.
Due to the close relation to Mean Shift, these robust loss functions ρ do
not only share the shape of the corresponding kernels K but also have
similar properties and form localized versions of the common global L2

and L1 loss functions.
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Fig. 6. Kernel density estimate f̂ for h = 3 of a planar target surface patch P (74 000 points) that is sampled inversely proportional to the intensity
of the Bird image. The regularity σQ of any projected point set Q onto this target directly depends on the uniformity of f̂ . Whereas WLOP [2] and
our simple weighting scheme cannot fully remove high-frequency variations, our full weighting scheme leads to a significantly better normalization
and more uniform density. Unit of h: [% BB diagonal].
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Fig. 7. Regularity σQ of the input subset Q (3700 points) projected on a
planar target surface patch P (74 000 points) that is sampled inversely
proportional to the intensity of the Bird image. Due to the better density
normalization, our weighting schemes further improve the regularity
across various combinations of the window size h and the repulsion
weight µ. Unit of h and σQ: [% BB diagonal].

functions and corresponding frequency-related properties
(see Section 4.1):

ρΓ(x |p, σ2) =
1

Γ(p2 )
γ(p2 ,

x2

2σ2 ) (29)

ΨΓ(x |p, σ2) =
2

(2σ2)
p
2 Γ(p2 )

|x|p−2
e−

x2

2σ2 x (30)

g̃Γ(x |p, σ2) =
2

(2σ2)
p
2 Γ(p2 )

|x|p−2
e−

x2

2σ2 (31)

Here, the losses ρΓ are built upon the lower incomplete
gamma function γ(a, x) =

∫ x
0 ta−1 e−t dt which is connected

to the upper incomplete gamma function via the relation
γ(a, x) + Γ(a, x) = Γ(a). By choosing p = 1 and applying
the identity γ(1/2, x) =

√
π erf(

√
x), we get the LOP loss

ρLOP(x |σ2) = erf( |x|√
2σ2

) (32)

where erf denotes the error function and is related to its com-
plementary counterpart via erfc(x) = 1− erf(x). Consider-
ing σ2 = 1/32, the relation g̃LOP(x |1/32) ∝ gLOP(x

2) fur-
ther highlights the close similarity to Mean Shift. Due to the
broad applicability of the concepts of robust statistics [79],
i.e. the definition and optimization of loss functions, to
traditional approaches, machine learning, and many other
fields such as Mean Shift, our losses ρΓ may also be highly
relevant for deep learning techniques and extend previous
generalizations [82]. Fig. 5 shows a comparison between
the Gaussian M-estimator (p = 2) and the LOP M-estimator
(p = 1).

5.4 Neural Network Priors
In the context of learning-based point cloud denoising,
many approaches rely on clean groundtruth data in order
to learn how various types of synthetically generated noise
such as Gaussian, uniform, or simulated sensor noise can be
effectively removed from the given point set. However, they
may not necessarily generalize to real-world data exhibiting
different possibly systematic yet unknown noise patterns
and, hence, lead to less reliable and accurate results. For this
purpose, TotalDenoising [50] formulates the learning objec-
tive in an unsupervised manner, which only requires noisy
input data without further knowledge about the noise itself
or corresponding clean data. Given noisy points p ∈ R3, the
parameters Θ of a neural network fΘ are optimized such
that the observations p are projected to the unknown surface
S represented by the distribution of modes p(x |S). In
particular, this can be formulated by the objective function

L(Θ) = Ep∼p(x |S) Eq∼q(x |p) ρ(fΘ(p, q)) (33)

where ρ denotes a loss function, e.g. the commonly used L2

loss or other choices such as robust losses (see Section 5.3),
and q denotes the generated samples during training. Since
any point x ∈ S on the surface is a valid target onto which
the noisy input p can be projected, the unsupervised train-
ing procedure will not converge to a unique solution. Thus,
the prior distribution

q(x |p) = p(x |S)K(W (x− p)) (34)

regularizes this problem by convolving the distribution
p(x |S) with a smoothing kernel K and a diagonal weight
matrix W ∈ R3×3 to favor the closest mode as the unique



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

−0.5 0 0.5

x
0

1

2

3
K̂
(x
)

∆ = 0.172

∆ = 0.008

−0.5 0 0.5

x
0

1

2

3

K̂
(x
)

∆opt = 0.047

∆opt = 0.008

bopt bopt

Bias b
∆opt

∆opt

∆

L
1

Er
ro

r b = 1

bopt = 0.8378

bopt = 0.9996

CLOP [5]
Ours

Original (b = 1) With Correction 1/bopt

Fig. 8. Analysis of bias in the width of the kernel approximations K̂LOP

to the original kernel KLOP. A correction by scaling the parameters σ̂k

with a global factor 1/bopt lowers the error for CLOP [5]. Nevertheless,
our approximation still better follows KLOP with a significantly lower
error and is almost unbiased in the 1-dimensional case.

TABLE 3
Ratio of Standard Deviations ∥Σ̂LOP∥1/2/∥ΣLOP∥1/2 Between the
Kernel Approximations K̂LOP and the Original Kernel KLOP in Rd

d = 1 d = 2 d = 3 d = 4 d → ∞

CLOP [5] 0.7931 0.7632 0.7430 0.7291 0.6659
Ours 0.9917 0.9834 0.9737 0.9640 0.8881
Ours (Consistent) 1.0137 1.0252 1.0362 1.0440 1

solution for projection. This convolution-based regulariza-
tion is similar to the formulation of the kernel density
estimate (1) in the Mean Shift approach. Therefore, instead
of using a Gaussian kernel as in the original TotalDensoising
approach, we can apply the gained insights of our kernel
family KΓ regarding feature preservation (see Section 4.1
and Fig. 3) and use the LOP kernel KLOP given in (11) in
the prior distribution.

6 EXPERIMENTAL RESULTS

In the following, we demonstrate the effectiveness of our
proposed extensions in Section 5 that are derived from the
theoretical properties of the kernel family (see Section 4).

6.1 Evaluation of WLOP Density Weights

In order to evaluate the performance of our density weight-
ing schemes defined in (23) and (24) (see Section 5.1), we
measured the regularity of the point cloud Q after projec-
tion onto a highly irregular target P [2]. For this purpose,
we sampled 74 000 target points from a 3D surface patch
inversely proportional to the intensity of the mapped Bird
image and took a random subset of 3700 points for projec-

0

0.5

1

Input KLOP

K̂LOP – CLOP [5] K̂LOP – Ours

dsurface = 0.23 dsurface = 0.03

Fig. 9. Bias of the kernel approximations K̂LOP when applying WLOP [2]
to smooth the Block model (25 000 points) with the window size h = 25.
Whereas the CLOP [5] approximation introduces systematic errors at
the edges due to the bias in the width, our variant closely resembles the
behavior of the original kernel KLOP. Unit: [% BB diagonal].

tion. Then, we applied 100 iterations of the LOP operator as
well as its weighted versions and computed the regularity

σQ =

[
1

|Q|
∑
i

(
d(qi,Q\{qi})− d(qi,Q\{qi})

)2
] 1

2

(35)

which is defined as the standard deviation of the near-
est neighbor distances d(x,Y) = minj∥x− yj∥ within the
point cloud Q. Fig. 7 shows the quantitative results for
60×50 combinations of h and µ. Throughout 76.7% of all
combinations, our simple weighting scheme (23) performs
better than WLOP with a slightly lower value of σQ on aver-
age. Our full scheme (24) outperforms WLOP in 99.3% and
the simple scheme in 98.7% of all combinations, especially
in configurations with low repulsion weights µ ∈ [0, 0.2].

These improvements in point cloud regularity directly
correspond to a more evenly distributed density along the
surface. Fig. 6 depicts a comparison of 1000×1000 evenly
sampled density values on the respective 3D surface patch.
Both WLOP and our simple scheme (23) normalize the lower
frequency components of the density, but still retain high-
frequency variations due to the independent computation
of each weight. On the other hand, our full scheme (24) does
not suffer from these artifacts and only leads to underesti-
mated densities at the boundary and in sparsely sampled
regions where the window size h is not sufficiently large to
bridge these gaps.

Since Mean Shift and, thereby, LOP and its variants
are scale-invariant with respect to a global normalization
constant, we computed the mean density f̂ for each weight-
ing scheme and used this value to normalize each density
distribution for a fair comparison. Whereas this value is
close to one for both of our schemes due to the correct
handling of the normalization constants, we can derive a
theoretical estimate of this value for WLOP

f̂WLOP ≈ 1

|P|h3
c
(d=3)
θ

c
(d=3)
LOP

c
(d=2)
LOP

c
(d=2)
θ

c
(d=3)
θ

= 2.396 (36)
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Fig. 10. Mesh denoising of the Gargoyle model (86 311 vertices, 172 610 faces) corrupted with 0.25 le uniform noise. Although the mean angular
distance dangle is slightly higher for the LOP loss ρLOP, features and finer details are better preserved. Unit: [◦].

Noisy ρL2 ρL1 ρGaussian ρLOP Original

dangle = 21.83 dangle = 21.16 dangle = 20.22 dangle = 18.38 dangle = 17.17

Fig. 11. Mesh denoising of the Box model (70 134 vertices, 140 259 faces) corrupted with 0.25 le uniform noise. Filtering with the LOP loss ρLOP

results in the lowest mean angular distance dangle and reconstructs fine details best. Unit: [◦].

which consists of three terms: 1) the normalization constant
of the kernel density estimate in (1); 2) the missing nor-
malization constant of the kernel θ; and 3) a dimension-
dependent correction factor. The last term models the differ-
ent domains from which the density is accumulated as we
consider a surface patch that corresponds to a 2D subspace
embedded in the 3D space. Therefore, the integration do-
main of the density differs by one dimension which can be
accounted for by the ratio of the normalization constants of
both the actual density kernel KLOP as well as the chosen
kernel θ for density weight computation.

6.2 Evaluation of CLOP Kernel Approximation
We evaluated the approximation error of our fitted param-
eter set in Table 2 (see Section 5.2) against the original
one proposed by CLOP [5]. First, we quantified systematic
errors of the kernel approximation K̂LOP by analyzing its
standard deviation ∥Σ̂LOP∥1/2 defined by the square root
of the magnitude of its covariance matrix (26). Table 3 indi-
cates that both CLOP and our approximation underestimate
the actual value ∥ΣLOP∥1/2 and that the bias increases in
higher dimensions. Although these errors are significantly
lower for our approximation throughout all dimensions,
they may still be noticeable. Our consistent approximation
always overestimates the actual standard deviation and has
a slightly higher error than the unconstrained variant in
low dimensions up to d = 5. However, it becomes unbiased
in the limit d → ∞ and should be preferred in higher
dimensions. We also considered minimizing the L1 distance
of the kernel approximation K̂LOP (25) to the actual kernel

KLOP (11) by scaling the values σ̂k with correction factors
1/bopt to obtain an improved set of parameters which is
shown in Fig. 8. Here, the error of our approximation is
significantly lower than for CLOP both before and after
optimal correction. Furthermore, the optimal scaling factors
are similar to the ratios of the standard deviation for d = 1.

In addition to the theoretical analysis of the kernel
approximations, we also measured the reconstruction error
when replacing the actual kernel in the update step (7) of
the projection with the respective approximation. For this
purpose, we chose the Block model and uniformly sampled
50 000 target points P and 25 000 projection points Q respec-
tively. We applied 100 iterations of WLOP as a smoothing
operator with a large window size of h = 25 percent of
the bounding box diagonal of P and a repulsion weight
µ = 0.4. Then, we measured the distance of each point to the
(triangulated) surface of the reference point cloud as well as
the mean point-surface distance

dsurface(X ,Y) =
1

|X |
∑
i

min
j

d(xi, t(yj)) (37)

where t(yj) denotes the j-th triangle of Y . Fig. 9 shows the
results of this point cloud smoothing operation. Whereas the
CLOP approximation introduces higher errors at the edges
of the sampled model due to the significantly underesti-
mated standard deviation of the kernel, our approximation
does not suffer from these artifacts.
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6.3 Evaluation of Robust Loss Functions
We tested the LOP M-estimator with the corresponding loss
ρLOP (32) against other popular choices, i.e. L2, L1, and
Gaussian M-estimators, for normal filtering in the context of
mesh denoising based on the iterative update step in (28)
(see Section 5.3). For this, we used the Gargoyle (86 311 ver-
tices, 172 610 faces) and Box (70 134 vertices, 140 259 faces)
models and corrupted the vertices in random directions by
0.25 le uniform noise where le denotes the average face edge
length. Then, we applied 50 iterations of normal filtering
with σ = 0.3 for each face normal n within its geometric
neighborhood of size r = 1.5 le, that is all normals whose
face centers are traversable along the surface within a ball
of size r. To avoid the singularity of the L1 and LOP losses
at x = 0, we only considered the neighboring face normals
in the initial iteration and used all normals subsequently.
For the second stage of the mesh denoising framework, we
used the vertex update by Zhang et al. [83] with their default
parameters of 20 iterations and w = 0.001 which avoids the
triangle flipping problem. We evaluated the reconstruction
error by the mean angular distance

dangle(X ,Y) =
1

|X |
∑
i

[
360

2π
arccos(⟨n(xi)|n(yi)⟩)

]
(38)

to the face normals of the ground truth mesh. Fig. 10 and 11
show comparisons between the L2, L1, Gaussian, and LOP
loss. Whereas the L2 loss leads to a very smooth surface,
its L1 counterpart is less sensitive to large normal variations
within the local neighborhood and better preserves features.
However, sharp edges cannot be reconstructed since all
collected normals are considered in a global fashion. The
Gaussian and LOP loss functions can be viewed as localized
versions of the former losses and do not suffer from this lim-
itation. Finer details being at a similar scale as the applied
noise are hard to reconstruct and mostly smoothed out by
all variants, but can be partially recovered by the LOP loss.

6.4 Evaluation of Neural Network Priors
We tested the application of different neural network priors
for unsupervised point cloud denoising (see Section 5.4).
For this purpose, we used the reference implementation of
TotalDenoising [50] and trained the method in an unsuper-
vised manner on the real-world large-scale Paris-rue-Madame
dataset [84], which was captured by a LiDAR sensor and has
no groundtruth data available. In particular, we employed
the same training procedure and default parameter set in
all cases, that is the scaling parameter α = 0.5 as well as
the standard deviation σ = 0.5657 for the kernel in the
prior (34), and only replaced the Gaussian kernel by the
LOP kernel. Finally, we used the trained models to denoise
the test split of the dataset. Fig. 12 shows a comparison
between the Gaussian and LOP kernel priors. While the
LiDAR noise is reliably removed from the test datasets for
both kernels, filtering with the Gaussian kernel leads to sig-
nificant oversmoothing of smaller features and, in addition,
to a noticable shrinkage of the point cloud. Furthermore,
holes may be introduced at sharp features like edges since
the Gaussian prior tends to move nearby points into clusters
apart from these features. In contrast to this, the LOP kernel
with equal standard deviation σ preserves higher frequency

Noisy Gaussian Prior LOP Prior

Fig. 12. Point cloud denoising of the Paris-rue-Madame dataset with
TotalDenoising [50] for the Gaussian and LOP kernels as neural net-
work priors. Performing the unsupervised training with the LOP prior
better preserves features and edges and leads to significantly less
oversmoothing and shrinkage. Furthermore, using the LOP prior also
better handles the systematic pattern induced by the scanning process.

TABLE 4
Comparison Between Unsupervised Learning-based Point Cloud

Denoising Methods. Unit: [10−4]

σnoise = 0.5 σnoise = 1 σnoise = 1.5

dCD dP2M dCD dP2M dCD dP2M

Score (Unsup.) [51] 0.150 0.115 0.404 0.315 0.821 0.609
TD (KGaussian) [50] 0.173 0.150 0.343 0.303 0.466 0.428
TD (KLOP) 0.175 0.148 0.282 0.246 0.424 0.389

information and, in turn, sharp features without introducing
holes. The shrinkage effect also is greatly mitigated which
becomes apparent at thin structures, like the sash bars in the
windows, where the width is significantly better preserved
and closely matches the expected width from the input data.

In addition to these qualitative results, we also per-
formed a quantitative comparison between recent learning-
based approaches. For a fair comparison, we only consid-
ered unsupervised methods, that is TotalDenoising (TD) [50]



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

with the original Gaussian kernel prior as well as with our
LOP kernel prior, and Score-based denoising [51] which,
although being supervised, also supports training in an
unsupervised manner. We used the ModelNet40 dataset [85]
provided by TD [50] that consists of 15 collected object
classes with 5 training meshes and 2 test meshes per class,
from which point clouds were sampled using Poisson disk
sampling and corrupted by Gaussian noise with standard
deviations of σnoise = 0.5, 1, 1.5 percent of the bounding box
diagonal. After training all methods with default parameters
on this dataset, we applied them to denoise the test data
using 1, 4, 7 iterations with TD and 1, 1, 2 iterations with
Score-based denoising respectively for the different noise
levels. We measured the performance with the commonly
used Chamfer distance

dCD(X ,Y) =
1

|X |
∑
i

d(xi,Y)2 +
1

|Y|
∑
i

d(yi,X )2 (39)

where d(xi,Y) = minj∥xi − yj∥ denotes the nearest neigh-
bor distance of xi to the point cloud Y as well as with the
point-to-mesh distance

dP2M(X ,Y) =
1

|X |
∑
i

min
j

d(xi, t(yj))
2

+
1

|Y|
∑
j

min
i

d(xi, t(yj))
2 (40)

where d(xi, t(yj)) is the distance of xi to the triangle t(yj)
as in (37). Table 4 shows the results of all methods averaged
over the test data. At the low noise level σnoise = 0.5, Score-
based denoising achieves slightly better results than To-
talDenoising where the performance is very similar between
the Gaussian and the LOP kernel prior. On the other hand,
applying the LOP kernel prior significantly increases the
robustness of TotalDenoising at higher noise levels and also
outperforms all other approaches with respect to both the
Chamfer and the point-to-mesh distance.

7 CONCLUSIONS

We presented incomplete gamma kernels, a novel family
of kernels generalizing LOP operators. By revisiting the
classical localized L1 estimator used in LOP, we revealed
its relation to the Mean Shift framework via a novel kernel
KLOP and generalized this result to arbitrary localized
Lp estimators. We derived several theoretical properties
of the kernel family KΓ concerning distributional, Mean
Shift induced, and other aspects such as strict positive
definiteness to obtain a deeper understanding of the op-
erator’s projection behavior. Furthermore, we illustrated
several applications including an improved WLOP density
weighting scheme, a more accurate kernel approximation
for CLOP, incomplete gamma losses ρΓ as a novel set of
robust loss functions, as well as better neural network priors
and confirmed their effectiveness in a variety of quantitative
and qualitative experiments. We expect that building upon
the insights provided by our work will be beneficial for
future developments on point cloud denoising as well as
in many other related fields, including applications beyond
pure denoising.
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