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Abstract
The topological structure of scalar, vector, and second-order tensor fields provides an important mathematical
basis for data analysis and visualization. In this paper, we extend this framework towards higher-order tensors.
First, we establish formal uniqueness properties for a geometrically constrained tensor decomposition. This allows
us to define and visualize topological structures in symmetric tensor fields of orders three and four. We clarify that
in 2D, degeneracies occur at isolated points, regardless of tensor order. However, for orders higher than two,
they are no longer equivalent to isotropic tensors, and their fractional Poincaré index prevents us from deriving
continuous vector fields from the tensor decomposition. Instead, sorting the terms by magnitude leads to a new
type of feature, lines along which the resulting vector fields are discontinuous. We propose algorithms to extract
these features and present results on higher-order derivatives and higher-order structure tensors.

Categories and Subject Descriptors (according to ACM CCS): I.4.7 [Image Processing and Computer Vision]: Fea-
ture Measurement—Invariants

1. Introduction

Feature extraction is a common strategy to deal with the
large and complex datasets generated by modern scientific
experiments and simulations. In visualization, topological
methods are an established way of finding geometric fea-
tures such as structurally important points, curves, or sur-
faces in spatial data. As a preprocess for interactive visual-
ization, this reduces the amount of information the render-
ing pipeline and the user need to handle. For the scientist,
the features might be the objects of ultimate interest, or they
may guide subsequent analysis with other tools.

Topological methods are most widely used to visualize
scalar [BPS98] and vector fields [HH89, PVH∗03]. Topo-
logical features have also been extracted from second-order
tensor fields, both symmetric [DH94,TSH01,ZPP05,STS07,
SNAHH11] and asymmetric [ZP05,ZYLL09]. However, we
are not aware of any attempts to define topological fea-
tures in higher-order tensor fields, which arise in applica-
tions like diffusion MRI [ÖM03, HS05, SS08], computer vi-
sion [SWS09], or when considering the higher-order deriva-
tives of any smooth scalar field.

This gap in the visualization literature is unfortunate,
since problems such as high information density, which have

contributed to the popularity of topological methods in vec-
tor and second-order tensor data, are even more grave in
higher-order tensor fields. We believe that the lack of suit-
able tools for visualization contributes to the fact that higher-
order derivatives are used only rarely and higher-order ten-
sors are picked up only reluctantly as a more general math-
ematical model. Therefore, it is the goal of this paper to ex-
plore topological features in higher-order tensor fields.

For this initial study, we consider steady symmetric 2D
tensor fields of orders three and four. We formally character-
ize the uniqueness properties of a constrained higher-order
tensor decomposition and use it to define vector fields that
hold all the information from the tensors. Topological fea-
tures in those fields include degenerate points and lines along
which the fields are discontinuous, a novel type of feature
that is not present in second-order tensor topology. Exper-
iments substantiate the applicability of the resulting algo-
rithms for feature extraction.

2. Background and Related Work

2.1. General Notions

We define a field to be a Ck continuous function f : D→ R
on a compact domain D ⊂ Rd . The exact order of differen-
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tiability k will be assumed as needed. The codomain R of a
scalar field is R; for a vector field, it is Rr; for a symmet-
ric second-order tensor field, it is Rr×r; higher-order ten-
sor fields are defined accordingly (e.g., Rr×r×r in the third-
order case). In all our examples, the dimensions in the do-
main and codomain agree, r = d = 2.

Topological analysis often focuses on generic properties.
Formally, a property is generic in some topological space X
iff there exists an open dense subset U ⊂ X that has the de-
sired property. In practice, this guarantees that the property
is preserved under small perturbations, and that any element
of X that does not have the property can be approximated
arbitrarily closely by another element that does.

2.2. Vector Field Topology

The topological analysis of a steady vector field f(x) is based
on its streamlines, the trajectories of massless particles that
are advected by f. Streamlines stop when ‖f(x)‖ = 0. When
the dimensions of the domain and the codomain of a vector
field agree and in the absence of constraints (such as no-
slip boundaries), this generically happens at isolated critical
points. Based on the vector field Jacobian, they are classified
as saddles, attracting or repelling nodes or foci, or centers
[HH89]. In 2D, additional points of interest occur near walls
(attachment and detachment nodes) and at the boundary of
the domain (incoming and outgoing points).

The topological skeleton of a 2D vector field consists of
these isolated points, the streamlines that connect to saddles
(separatrices), and periodic orbits. It partitions the domain
of the field into regions of uniform asymptotic behavior, i.e.,
all streamlines in the same region start and end in a common
critical point, closed streamline, or segment of a boundary.

2.3. Second-Order Tensor Field Topology

An n× n symmetric matrix T can be written in terms of n
real eigenvalues λi and orthonormal eigenvectors vi:

T =
n

∑
i=1

λivi⊗vi. (1)

Based on this spectral decomposition of a tensor field
T(x), we may define n eigenvector fields v̄i(x) = λi(x)vi(x)
that contain all the information of the original tensor field.
The orientation in eigenvector fields is undefined, v̄i and−v̄i
are equivalent, but tangent curves (hyperstreamline trajecto-
ries [DH93]) can still be integrated.

In the framework of Delmarcelle and Hesselink [DH94],
tensor field topology is defined to be the topology of the
derived eigenvector fields. The locations x at which hyper-
streamlines in v̄i(x) stop are places in which λi(x) = λ j(x)
for at least one j 6= i. In this case, the spectral decomposi-
tion is not unique, since vi and v j can be replaced by any or-
thonormal pair ṽi and ṽ j that spans the same space. In uncon-
strained 2D data, this generically happens at isolated points,

which are called degenerate points and take the place of criti-
cal points in vector field topology. Zheng et al. [ZPP05] have
transferred this framework to 3D, where degeneracies form
structurally stable features lines. Our work presents a differ-
ent generalization, to 2D higher-order tensor fields.

2.4. Higher-Order Tensors

The coefficients ti1i2...i` of an order-` tensor T with respect
to some basis form a multi-way array with ` indices, each
ranging from 1 to the dimension of the tensor. The coeffi-
cients of a symmetric tensor are invariant under any index
permutation σ: ti1i2...i` = tiσ(1)iσ(2)...iσ(`) . This greatly reduces

the number of free parameters in the tensor, from 2` to `+1
for a two-dimensional tensor. When writing out tensor coef-
ficients, we will only consider these non-redundant entries.

In recent years, applications and decompositions of
higher-order tensors have been an active topic of research.
An excellent introduction is given by Kolda and Bader
[KB09]. Within the visualization community, there is still
relatively little work on higher-order tensors. Hlawitschka
and Scheuermann [HS05] define a higher-order analog of
hyperstreamlines; Schultz and Seidel [SS08] use low-rank
tensor approximation to achieve more accurate fiber esti-
mates in diffusion MRI. From fourth-order tensors that occur
in solid mechanics, Neeman et al. [NBJ∗08] extract second-
order tensors that can be visualized with traditional tensor
glyphs. Schultz and Kindlmann [SK10] present a sharpened
glyph for symmetric higher-order tensors. None of these pre-
vious works have followed a feature-based visualization ap-
proach, which is the main focus of our paper.

Palacios and Zhang [PZ07] have used symmetric 2D
order-` tensor fields to represent `-way rotational symme-
tries, which play a role in remeshing and pen-and-ink sur-
face sketching. Even though the authors provide a topolog-
ical analysis of singularities and separatrices, their analy-
sis is specific to rotational symmetries, which form a two-
dimensional linear subspace of the `+1-dimensional higher-
order tensor space. Therefore, these existing results do not
carry over to the more general case discussed in our paper.

3. Higher-Order Tensor Field Topology

We will generalize vector field topology to higher order ten-
sors by deriving a set of vector fields that contain all the in-
formation from the tensors, and considering their topology.

3.1. The Canonical Decomposition

A symmetric rank-1 matrix is defined as the outer product
v⊗ v of some vector v with itself. In analogy, a symmetric
rank-1 order-` tensor is defined as the `-fold outer product,
which we denote by v⊗`. Any symmetric tensor T can be
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written as a sum of symmetric rank-1 terms,

T =
R

∑
i=1

λiv⊗`i , (2)

where we assume that all vi are normalized and scaling is
performed through the λi [CGLM08]. The symmetric tensor
rank is defined as the smallest integer R for which an exact
decomposition is possible. Eq. (2) is known as the symmetric
outer product decomposition, or the symmetric canonical de-
composition. In an alternative, but equivalent formulation, it
has been studied in considerable depth by Reznick [Rez92].

3.2. A Geometrically Constrained Decomposition

Even though Eq. (2) can be regarded as a generalization of
the spectral decomposition, it does not define vector fields
suitable for topological analysis, since the result may not be
unique. In fact, there is a one-dimensional fiber of solutions
for all even-order 2D tensors [CM96]. This is also true for
second-order tensors; the only reason why the spectral de-
composition in Eq. (1) is generically unique is the orthogo-
nality constraint on the vi.

Kyrgyzov and Erdogmus [KE10] argue that a natural re-
laxation of orthogonality for n two-dimensional vectors is
a fixed spacing of π/n between neighbors. Consequently,
they propose to decompose symmetric order-` tensors with
a fixed frame of ` rank-1 terms:

T =
`

∑
i=1

λiv⊗`i with vi =

(
cos(−θ+(i−1)π/`)
sin(−θ+(i−1)π/`)

)
. (3)

This geometrically constrained decomposition has `+ 1
degrees of freedom: ` in the λi, and one more in the an-
gle θ, which determines the joint rotation of the vi. Since
this matches the number of free parameters in the symmetric
tensor T , Kyrgyzov [Kyr10] expresses the hope that Eq. (3)
might offer a one-to-one reparameterization. However, an
equal number of parameters is not a sufficient condition for
uniqueness, and no formal proof has been presented.

Two key contributions of our work are a proof that, at
least for orders ` = 3 and ` = 4, this constrained decompo-
sition always exists, and a full characterization of the cases
in which it is unique. Our analysis reveals that some ten-
sors T can be written in the form of Eq. (3) regardless of
the choice of θ. Since these tensors do not possess a unique
constrained decomposition, we treat them as a higher-order
analog of degenerate tensors in second-order fields, which
provide the geometric features of central interest in topo-
logical visualization: Degenerate points in 2D [DH94] and
degenerate lines in 3D [ZPP05].

3.3. Analytical Solution

In order to find the rotation θ in their constrained decompo-
sition, Kyrgyzov and Erdogmus [KE10] explore various op-

timization techniques. The definition of topological features
in higher-order tensor fields requires an analytical solution.

Our strategy for its derivation is analogous to the Ja-
cobi method for matrix diagonalization, which is explained
briefly in Section 3.3.1. We observe that when the angle θ in
Eq. (3) is known, the higher-order tensor can be written in
a special form. In analogy to the diagonal form of a second-
order tensor, it allows us to easily solve for the λi. We then
derive an analytical solution for the value of θ. Except for the
degenerate cases that will be used to define topological fea-
tures, there are ` isolated solutions within θ∈ (−π,π], corre-
sponding to reorderings of the terms in Eq. (3). Our analysis
is for tensors of orders three and four, but we conjecture that
it carries over to 2D tensors of arbitrary order.

3.3.1. The Second-Order Case

When a symmetric second-order tensor T is written in a
basis that consists of its orthonormal eigenvectors (v1 =
(1,0)T, v2 = (0,1)T), its coefficient matrix becomes diag-
onal, with the eigenvalues λi as diagonal elements:

T =

(
λ1 0
0 λ2

)
. (4)

Given a general symmetric matrix with entries ti j, the an-
gle θ by which the matrix needs to be rotated to attain diag-
onal form can be found by solving

tan(2θ)(t22− t11) = 2 t12 (5)

for θ [Jac46]. When T is isotropic (T = αI, where I is the
identity matrix), both sides of Eq. (5) are zero, regardless of
θ. This is the degenerate case on which topological visual-
ization of 2D second-order tensor fields is founded.

3.3.2. The Third-Order Case

Let us now consider the coefficients of a symmetric third-
order tensor when the first basis vector is aligned with the
vector v1 in the decomposition, i.e.,

v1 =

(
1
0

)
v2 =

(
1/2√

3/4

)
v3 =

(
−1/2√

3/4

)
. (6)

Substituting into Eq. (3) gives the tensor coefficients

t111 = λ1 +
1
8
(λ2−λ3) t112 =

√
3

64
(λ2 +λ3)

t122 =
3
8
(λ2−λ3) t222 =

√
27
64

(λ2 +λ3) .

(7)

Eq. (7) reveals that when the tensor is in this canonical
frame, t112 and t222 are linearly dependent,

t222−3 t112 = 0. (8)

This condition is analogous to the diagonality constraint
in the second-order case (t12 = 0) in the sense that it allows
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for simple computation of the scalars λi in Eq. (3), by solv-
ing the linear system in Eq. (7):

λ1 = t111−
1
3

t122 λ2 =
4√
3

t112 +
4
3

t122

λ3 =
4√
3

t112−
4
3

t122.

(9)

In analogy to the Jacobi rotation in Eq. (5), we can com-
pute the angle θ by which we need to rotate the third-order
tensor such that Eq. (8) holds. It is found by writing the
coefficients t̃112 and t̃222 of a rotated tensor T̃ in terms of
the rotation angle θ and the original coefficients of T . Let
c = cos(θ) and s = sin(θ). Then,

t̃112 =c2st111 +(c3−2cs2) t112+

(s3−2c2s) t122 + s2ct222

t̃222 =s3 t111 +3s2ct112 +3sc2 t122 + c3 t222.

(10)

After substituting this into Eq. (8), algebraic simplifica-
tion and trigonometric equalities yield

tan(3θ)(t111−3 t122) = t222−3 t112. (11)

Within θ∈ (−π,π], this equation has three solutions. They
correspond to reorderings of λi and the corresponding vi, so
generically, the decomposition in Eq. (3) is indeed unique
up to these trivial permutations. After the rotation, the λi
are given by Eq. (9). The degeneracy that we will use for
topological visualization of third-order tensor fields occurs
when Eq. (11) holds for all θ. This happens iff

t111−3 t122 = 0 and t222−3 t112 = 0. (12)

3.3.3. The Fourth-Order Case

The symmetric fourth-order case can be treated in full anal-
ogy to the previous section. When writing the tensor coeffi-
cients ti jkl in the basis whose first vector is aligned with v1,
we find the linear dependence

t1112 = t1222, (13)

leading to the following formulas for λi:

λ1 = t1111− t1122 λ2 = 2(t1122 + t1112)

λ3 = t2222− t1122 λ4 = 2(t1122− t1112).
(14)

A Jacobi-like angle θ can be computed from

tan(4θ)(t1111 + t2222−6t1122) = 4(t1222− t1112). (15)

The four solutions within θ ∈ (−π,π] again correspond to
reorderings of the terms in Eq. (3), and a degenerate case, in
which θ is undetermined, occurs when

t1111 + t2222−6t1122 = 0 and t1222− t1112 = 0. (16)

3.4. Isotropic vs. Degenerate Tensors

Isotropic matrices, T = αI, exhibit rotational invariance:
Their quadratic form T (x) = xTTx is constant for all unit-
length x. Similarly, we call a higher-order tensor T isotropic
iff its homogeneous form T (x) = T ·` x (the `-fold inner
product between T and x) is constant on the unit circle.

Since the homogeneous forms of odd-order tensors are
odd functions, T (−x) =−T (x), the only isotropic odd-order
tensors are zero tensors. Even-order isotropic tensors are ob-
tained by setting all λi in Eq. (3) to some common value. It is
known [SWS09] that the average of T (x) over the unit circle
for an even-order rank-1 tensor T = λv⊗` equals

1
2π

∫
‖x‖=1

T (x)dx = λ
(`−1)!!

`!!
, (17)

where the double factorial `!! is defined via the recursion
`!! = `× (`− 2)!!, 1!! = 0!! = 1. It follows that we obtain
an even-order tensor I(`) whose homogeneous form is unity
on the unit circle if we choose λi = (`− 2)!!/(`− 1)!!. All
other isotropic tensors are multiples of it,

T = αI(`). (18)

In Section 3.2, we have defined degenerate tensors as ten-
sors T that can be written in the form of Eq. (3) for all
choices of θ. For matrices (` = 2), the isotropic and the de-
generate case coincide. For ` = 3 and ` = 4, the definition
of degeneracy leads to two independent linear constraints,
i.e., it is fulfilled within a subspace of codimension two.
Isotropic tensors form a zero-dimensional (odd `) or a one-
dimensional (even `) proper subspace of these degenerate
tensors. Thus, a subspace of tensors with order ` > 2 are
degenerate, but not isotropic. For these tensors, Eq. (3) has
an indeterminacy that does not simply amount to reordering
the terms, and which is not caused by a lack of orientational
information in the tensor (i.e., isotropy).

Fig. 1 illustrates a third-order (a) and a fourth-order (b)
example of such a non-isotropic degeneracy. The respective
tensor is shown with a polar plot p(x) = |T (x)|x for ‖x‖= 1,
where color indicates the sign of T (x) (red is positive, blue is
negative). We also show the scaled vectors v̄i = λivi, which
contain all information from the tensor. For even `, the vec-
tors are without orientation, i.e., v̄i and −v̄i are equivalent,
so we show them as line segments (since all λi in our exam-
ple are positive, we do not use color coding here).

From different choices of θ, we get different decomposi-
tions that all fulfill the constraint in Eq. (3), and all sum to the
same tensor, t111 = 0, t112 = 1, t122 = 0, t222 = 3 in (a) and
t1111 = 2, t1112 = 0, t1122 = 1, t1222 = 0, t2222 = 4 in (b). The
two-dimensional subspace of degenerate third-order tensors
is spanned by scaling and rotating the example in (a). In
addition to rotation and scaling, the three-dimensional sub-
space of degenerate fourth-order tensors accounts for adding
any multiple αI(4) of the identity.
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(a) Possible decompositions of a degenerate third-order tensor.

(b) Possible decompositions of a degenerate fourth-order tensor.

Figure 1: Even though these higher-order tensors are not
isotropic, they do not have a unique decomposition into ge-
ometrically constrained rank-1 terms. All other degenerate
cases can be derived from the examples visualized here.

3.5. Topological Features in Derived Vector Fields

3.5.1. Degenerate Points

We have seen above that, at least for ` ∈ {2,3,4}, degen-
eracies form a subspace A of codimension two within the
space of all 2D order-` tensors. Due to its two spatial di-
mensions, the tensor field forms a 2D subspace B in the
same `+ 1-dimensional space, i.e., a space of codimension
`−1. Assuming non-degenerate configurations of the fields,
the occurance of a degeneracy within the 2D field lies in
the transversal intersection of A and B, so codim(A∩B) =
codim(A)+ codim(B) = 2+ `−1 = `+1. Since this equals
the dimensionality of the full order-` tensor space, we will
generically observe zero-dimensional degeneracies, degen-
erate points, regardless of the tensor order `. This reasoning
is analogous to the proofs given by Damon [Dam98] and by
Zheng et al. [ZPP05] for the fact that degeneracies in second-
order 3D tensor fields form lines; we refer to these papers for
a more formal treatment of transversal intersections.

Even-order isotropic tensors form a subspace of codimen-
sion `. By the same argument, their dimensionality in order-
` 2D tensor fields is 2− `. This means that generically, they
only occur in second-order fields, where they coincide with
degenerate points. If they occur in the higher-order case, they
can be transformed into a non-isotropic degeneracy by an ar-
bitrarily small perturbation.

3.5.2. Poincaré Index of Degenerate Points

An important property of a critical point in a vector field
v(x) is its Poincaré index, defined as the number of counter-
clockwise revolutions of the vector v(x), as x moves in coun-
terclockwise direction along a closed curve that contains the
critical point in question, but no other degeneracy.

We adapt this definition of the Poincaré index by consid-

ering rotations of the frame of all vi in Eq. (3) as a whole.
The angle θ of the frame is given in Eq. (11) and Eq. (15) as

q tan(`θ) = p, (19)

where p and q are linear functions of tensor coefficients and,
by definition, p = q = 0 at the degeneracy.

In analogy to vector [HH89] and second-order tensor
topology [DH94], we investigate degeneracies based on a
first-order approximation of the tensor field. If we param-
eterize a circle around the degeneracy by ψ ∈ [0,2π), the
first-order approximation of p and q can be written as

p(ψ)≈ p̂sin(ψ+ψ
(p)
0 ) q(ψ)≈ q̂sin(ψ+ψ

(q)
0 ). (20)

Substituting Eq. (20) into Eq. (19) reveals that along the
circle, `θ takes on each value in (−π,π] exactly once, rotat-
ing the frame of all vi in Eq. (3) by ±2π/`. For ` = 2, this
leads to the well-known Poincaré indices of trisectors (−1/2)
and wedges (1/2) [DH94]. The fact that they are half-integers
reflects the non-orientability of eigenvectors in the presence
of a degeneracy. For ` > 2, a Poincaré index of±1/` makes it
impossible to partition the ` vectors from the decomposition
into ` vector fields without introducing discontinuities that
originate in degeneracies.

Fig. 2 illustrates this with examples from a third- (a) and
a fourth-order field (b): Along a closed curve around the de-
generacy, the joint frames of three and four vectors, respec-
tively, vary continuously. However, when we follow any in-
dividual vector (e.g., the one marked in cyan), we find that
when we return to the initial starting point, the vector has not
been rotated back to the vector that we started with, but to a
different vector in the same frame, ±2π/` apart.

The Poincaré index of a degeneracy in a second-order ten-
sor field is known to be 1

2 sign(ad−bc) [DH94], where:

a =
1
2

∂(t11− t22)

∂x
b =

1
2

∂(t11− t22)

∂y

c =
∂ t12
∂x

d =
∂ t12
∂y

.

(21)

From Eq. (11), an analogous rule can be derived for third-
order tensor fields. Here, the index is 1

3 sign(ad− bc) with

a =
∂(3t122− t111)

∂x
, c =

∂(t222−3t112)

∂x
, (22)

and b and d are corresponding partial derivatives with re-
spect to y. Finally, the index of a degenerate point in a fourth-
order tensor field is 1

4 sign(ad−bc), with:

a =
∂(6t1122− t1111− t2222)

∂x
c = 4

∂(t1222− t1112)

∂x
. (23)

We will draw degenerate points in red when they have a
positive index, yellow when their index is negative. A more
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(a) Third-order tensor field (b) Fourth-order tensor field

Figure 2: Around degenerate points (yellow/red), it is im-
possible to partition the vectors from the decomposition into
continuous vector fields.

detailed characterization of degenerate points, comparable
to the differentiation between single and double wedges in
second-order tensor topology, is left to future work.

3.5.3. Lines of Discontinuity

We have learned in the previous section that partitioning the
vectors around a degeneracy inevitably leads to discontinu-
ities. A natural way of defining vector fields that are at least
piecewise continuous is to sort the rank-1 terms according to
their λi. In this case, discontinuities in vector direction occur
when λi = λ j for some pair i 6= j.

In the second-order case, this leads to the major and mi-
nor eigenvector fields, v̄1(x) and v̄2(x). Discontinuities are
restricted to degenerate points, which are the only locations
at which λ1 = λ2. The reason why this single equality acts
as a codimension-two constraint is that it also eliminates the
degree of freedom that is otherwise present in jointly rotat-
ing v̄1 and v̄2. In higher-order fields, the constraint λi = λ j
only defines a codimension-one subspace, so the locations at
which the constraint is fulfilled form structurally stable lines.

Rotating θ in Eq. (3) by π/` amounts to multiplying one
of the vi by −1. For odd `, the scaled v̄i has a fixed orien-
tation, so the rotation flips the sign of the corresponding λi.
To account for this indeterminacy, we sort the λi by abso-
lute value in tensor fields of odd order. When talking about
“larger” and “smaller” λi, we refer to an ordering by signed
value when ` is even, by absolute value when ` is odd.

In third-order tensor fields, we can distinguish major
and minor lines of discontinuity, depending on whether the
larger or the smaller |λi| coincide. All degenerate third-order
tensors are rotated and scaled variants of the example in
Fig. 1 (a). As illustrated there, |λ1| = |λ2| and |λ2| = |λ3|
are both attained exactly once within θ ∈ [0,π/3). Since θ

is rotated by ±2π/3 around a degeneracy, we conclude that
a major and a minor line of discontinuity originate from the
degeneracy, and continue through it.

In regions without a degeneracy, we can define continu-
ous and signed, but unsorted scalar fields λ̃i(x) via a con-

(a) Third-order tensor field (b) Fourth-order tensor field

Figure 3: Major (blue), medium (cyan), and minor (green)
lines of discontinuity on bilinear cells; tensors at the corners
are shown with glyphs, degenerate points with red dots.

tinuously varying frame of vi. This is analogous to locally
orienting the eigenvectors in a second-order tensor field. It
clarifies that lines of discontinuity are closed curves, the zero
level sets of λ̃i− λ̃ j and λ̃i + λ̃ j. They originate from degen-
erate points, but can also occur in their absence. This also
helps us to understand the two cases in which lines of discon-
tinuity in third-order tensor fields cross in absence of a de-
generacy. The first occurs when λ̃i = λ̃ j = 0; two lines pass
through this point, corresponding to λ̃i = λ̃ j and λ̃i = −λ̃ j.
Since we are sorting by magnitude, they are both minor lines.
The second case is |λ̃1| = |λ̃2| = |λ̃3|, where the three lines
|λ̃1| = |λ̃2|, |λ̃1| = |λ̃3|, and |λ̃2| = |λ̃3| meet. This is the
only location at which the type of the involved lines changes
between major and minor.

In addition to rotation and scaling, degenerate fourth-
order tensors can differ from the example in Fig. 1 (b) by
some multiple of the identity αI(4). However, addition of an
isotropic tensor only offsets all λi by some constant amount,
so it does not influence equalities of the type λi = λ j. We
conclude from Fig. 1 (b) that all three types of lines (ma-
jor, minor, and medium, which do not exist in the third-order
case) will pass through a degeneracy. Moreover, λ1 = λ2 and
λ3 = λ4 are attained at the same θ, so the major and minor
lines will be tangential to each other.

Outside of degeneracies, major and minor lines cross
without affecting each other, at any angle. Analogous to
third-order tensor fields, we obtain triple crossings between
major and medium (λ1 = λ2 = λ3) or minor and medium
(λ2 = λ3 = λ4) lines, at which they change their type. Except
at degenerate points, crossings of all three types of lines are
non-generic. Also, minor lines no longer self-intersect, since
we are now sorting by signed rather than absolute value.

Figure 3 shows lines of discontinuity in bilinear cells
whose vertices have been set to randomly generated third-
and fourth-order tensors, shown with polar plots. All cross-
ings can be observed as explained in our analysis.

Lines of discontinuity are not separatrices, and a full topo-
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logical analysis would additionally extract those. However,
we believe that it is fundamental to fully understand the limit
sets of a vector field before considering separatrices, so we
concentrate on that aspect in this initial work.

4. Implementation

4.1. Extracting Degenerate Points

Just like in the vector and second order tensor case, degen-
erate points in third- and fourth-order tensor fields are given
by two linear constraints on their coefficients, so they can be
located numerically in full analogy to the methods from 2D
vector and tensor topology. For details, we refer to [Tri02].

On a linear cell, substituting the parameter-dependent ten-
sor coefficients into Eq. (12) or Eq. (16) leads to a system of
two linear equations in two unknowns, which has at most
one isolated solution within the cell. On a bilinear cell, it
leads to a system that is quadratic in one of the variables and
yields up to two isolated solutions.

4.2. Extracting Lines of Discontinuity

Unlike separatrices, which have to be integrated from certain
limit points, lines of discontinuity can be identified from lo-
cal information alone, based on the fact that λi = λ j for some
i 6= j. Given fixed tensor coefficients, Section 3.3 provides
an analytical solution for λi. Unfortunately, with parameter-
dependent coefficients, the equations become too complex
to directly solve for the curves along which λi = λ j.

Finding lines of discontinuity numerically is facilitated by
the fact that along a linearly interpolated edge, p and q in
Eq. (19) change linearly, so θ varies monotonically, and by
less than π/`. This allows us to find the correspondence be-
tween the vector frames at the two endpoints of an edge.

The correct correspondence is determined by the rotation
of the joint frame along the edge. Similar to Eq. (22) and
Eq. (23), the direction of this rotation is given by the deriva-
tives of p and q. Along a linear edge, they are proportional
to pdiff = (pe− ps,qe− qs)

T, where ps, qs, pe, and qe are
the values of p and q at the start and end of the edge, respec-
tively. Define the vector p⊥s = (qs,−ps)

T. If p⊥s ·pdiff > 0,
the correspondence of a vector v(s)i at the start of an edge

is given by the unique vector v(e)j at its end that forms the

smallest angle with v(s)i in counterclockwise direction. If
p⊥s ·pdiff < 0, it is the closest vector in clockwise direction.

Given this correspondence, intersections between a lin-
ear edge and the feature lines can be found with an adap-
tive refinement scheme that is similar in spirit to a previous
approach from the tensor topology literature [TKW08], but
independent in its specific algorithmic steps:

1. If for any i 6= j, the sign of λi−λ j differs at the two end-
points, the edge is intersected by a line of discontinuity.
Otherwise, it is ignored.

2. Approximate ∆ = λi − λ j by a linear function ∆̃(α) =

(1−α)∆(s) +α∆
(e) along the edge, and solve for the po-

sition α where ∆̃(α) = 0. Interpolate the tensor coeffi-
cients at this point, solve for the exact values of λi(α)
and λ j(α), and compute the relative error

δ =
|λi−λ j|
|λi|+ |λ j|

. (24)

3. If the second step produced a sufficiently accurate ap-
proximation (δ < 10−4 in our experiments), return α.
Otherwise, subdivide the edge at its midpoint, and recur-
sively apply steps 1–3 to both parts.

If we are looking for |λi|= |λ j|, we need to consider zero
crossings of λi + λ j in addition to those of λi − λ j. This
relatively simple method does not produce false positives
and it finds the discontinuities up to the desired accuracy,
but it may not find all intersections, since ∆ might change
sign multiple times along the edge. A higher detection rate
is achieved by prescribing a minimum recursion depth. How-
ever, zero crossings can be arbitrarily close to each other, so
finding them all is an ill-conditioned problem.

Computing the tangent of a line of discontinuity involves
the gradients∇λi. Unfortunately, the derivatives that are eas-
ily computed from the tensor field are the gradients of the
tensor components ∇ti jk, and analytically deriving the Ja-
cobian Jt→λ that is needed to compute ∇λi from ∇ti jk is
unwieldy. Instead, from Eq. (7) and the derivatives of ti jk
with respect to θ, which are obtained from equations like the
ones in Eq. (10), we compute the much simpler

J(3)
λ→t =


∂t111
∂λ1

∂t111
∂λ2

∂t111
∂λ3

∂t111
∂θ

...
...

...
...

∂t222
∂λ1

∂t222
∂λ2

∂t222
∂λ3

∂t222
∂θ



=


1 1

8 − 1
8 − 3

4

√
3
4 (λ2 +λ3)

0
√

3
64

√
3
64 λ1 +

5
8 (λ3−λ2)

0 3
8 − 3

8 − 1
4

√
3
4 (λ2 +λ3)

0
√

27
64

√
27
64

9
8 (λ2−λ3)


(25)

and obtain the derivative vector d′ = (λ′1,λ
′
2,λ
′
3,θ
′)T

by solving the linear system Jλ→td
′ = t′ with t′ =

(t′111, . . . , t
′
222)

T. The fourth-order version of Jλ→t is

J(4)
λ→t =


1 1

4 0 1
4 λ4−λ2

0 1
4 0 − 1

4 λ1− 1
2 (λ2 +λ4)

0 1
4 0 1

4 0
0 1

4 0 − 1
4

1
2 (λ2 +λ4)−λ3

0 1
4 1 1

4 λ2−λ4

 . (26)

Note that at degenerate points, derivatives of λi and θ are
undefined, as Jλ→t becomes singular. At any other point
(x,y) on the line along which λi−λ j = 0, we compute the
2D gradient g(x,y) = ∇λi−∇λ j by taking partial deriva-
tives ∂t/∂x and ∂t/∂y in the tensor field and solving for
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the partial derivatives ∂d/∂x and ∂d/∂y using the Jacobian
Jλ→t , as described above. The tangent is orthogonal to g.

These basic ideas were used to create Fig. 3. A sampling
of the curves was obtained by sweeping axis-aligned edges
over a bilinear grid, and each detected feature intersection
is visualized with a short line segment that is aligned with
the curve tangent. If some application should require an ex-
plicit representation of curve topology, our analysis provides
all ingredients for tracking them: Intersection with edges can
be used to find seed points, tangents and normals can be used
for prediction and correction steps, and the analysis in Sec-
tion 3.5.3 clarifies which bifurcations must be treated.

5. Experiments

5.1. Higher-Order Derivatives

Just like the first-order partial derivatives of a smooth scalar
field f (x) make up the gradient vector ∇ f (x), and the
second-order derivatives form the symmetric Hessian ma-
trix H(x), third-order partial derivatives ∂

3 f (x)/∂xi ∂x j ∂xk
produce a symmetric third-order tensor field T (x).

We have computed such third-order derivatives from
three synthetic MR images, created using the Brain-
Web [CKK∗97] normal brain template with T1 weighting
and 1mm slice thickness. The first example (closeup in
Fig. 4 (a)) is noise-free. In the second and third case, we
added 3% (Fig. 4 (b)) and 5% (Fig. 4 (c)) noise with re-
spect to white matter signal intensity and a spatially vary-
ing gain field, which multiplies image intensities by val-
ues in the range of [0.8,1.2]. Such bias arises from differ-
ent sources [STBA94] and varies over the image in complex
shapes. The noisy images were also rotated by 10◦ to simu-
late subject motion between acquisitions.

The third-order tensors were interpolated bilinearly, and
degenerate points were extracted. Even though they do not
have a clear interpretation in terms of the depicted brain
anatomy, the same is true for image keypoints that are
presently used in computer vision [TM08]. Such features can
provide useful landmarks for tasks like image registration,
tracking, or object recognition if we are able to reliably re-
cover and match them in a transformed version of the image,
no matter if they have a clear semantic interpretation.

In Fig. 4 (b) and (c), the degeneracies from the perturbed
images are rendered as crosses. To facilitate the compari-
son, the features from (a) are rotated with the image and
overlaid as circles. Few features vanish in the degraded im-
age, even though some are introduced by the noise. A large
number of the feature points remain close to their original
locations, and preserve their type (index). The degenerate
points benefit from their invariance under rotation and uni-
form scaling, which reduces the impact of the gain field. The
fact that higher-order derivatives are sensitive to noise can be
addressed by scale space analysis [Lin98]. Our experiment

(a) Third-order degeneracies in a noise-free synthetic MR image.

(b) Rotation, noise, and spatially varying gain applied to (a).

(c) Same as (b), with higher level of noise.

Figure 4: Degeneracies in third-order derivatives provide
feature points that are fairly robust under rotation and typi-
cal MR image degradations. For comparison, points from (a)
are overlaid on (b) and (c) as circles.

used a fixed Gaussian scale σ = 2; we plan to study the per-
sistence of our features over scale as part of our future work,
and we hope to evaluate their merit relative to more estab-
lished keypoints from the computer vision literature.

5.2. Higher-Order Structure Tensors

Given a color image as a vector-valued function f(x) over
some image domain Ω ⊂ R2, its order-` structure tensor
Sρ(x) at scale ρ is defined as [SWS09]

Sρ(x) = Gρ ?
3

∑
i=1

(
∇ fi(x)

‖∇ fi(x)‖
`−2
`

)⊗`
. (27)

Here, Gρ? denotes convolution with a Gaussian kernel with
standard deviation ρ, and the sum is taken over RGB com-
ponents fi(x).
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(a) A photograph of Bergen (b) Major lines at ρ = 3

(c) Number of degeneracies
as a function of ρ (d) Major lines at ρ = 7

Figure 5: The major lines of discontinuity in the higher-
order structure tensor field of a given image (a) indicate
meaningful regions at different scales (b/d).

The major eigenvector of a second-order structure tensor
provides an estimate of the locally dominant gradient direc-
tion [Di 86]. We have found experimentally that the major
vector field v̄1(x) from the constrained decomposition of
a fourth-order structure tensor is generally closely aligned
with this estimate, except around the lines of discontinuity.
The analysis in Section 3.5.3 has shown that these lines are
closed, so they partition the image domain Ω into regions in
which the fourth-order structure tensor estimate of the prin-
cipal gradient direction varies continuously.

Figure 5 illustrates these lines in a structure tensor field
that has been computed from a color image of Bergen, Nor-
way. The black-and-white version is only used for visual-
ization, to distract less from the lines. The major lines of
discontinuity are clearly related to semantic structures in the
picture, like the windows and rooftops of the houses, even
though they are less expressive when no clear gradients are
present (e.g., in the sky region).

The level of detail in the lines varies with the chosen scale
ρ. Using the number of degenerate points as a measure of
topological complexity, Figure 5 (c) shows that many un-
stable features exist at small scales (ρ < 2). Major features,
such as the ones in Subfigure (d), are preserved up to much
larger scales. In the future, it would be interesting to track
these features over scale, to study the topology at even higher
orders (` = 6 or ` = 8), and to combine it with the idea
of nonlinear structure tensors [BWBM06]. Possibly, this ap-

proach could be refined sufficiently to serve as an ingredient
in a method for unsupervised texture segmentation.

6. Conclusion and Future Work

Methods for the extraction of geometric features from
higher-order tensor fields are needed to achieve concise and
effective visualizations, but are largely unexplored. Simi-
lar to previous work on second-order tensor fields [DH94,
ZPP05], we have approached this problem from a math-
ematical, application-independent perspective, by formally
extending established concepts of topological visualization
to 2D symmetric higher-order tensor fields, and studying the
resulting structures.

Starting from the observation that a continuous decom-
position into a unique set of vectors is required to apply
the concepts of vector field topology, we derived an ana-
lytical solution for a geometrically constrained decomposi-
tion [KE10]. We showed that, at least for orders ` = 3 and
`= 4, it leads to continuous and unique results, except at iso-
lated degenerate points, which provide topological features.

This allowed us to derive vector fields that contain all
the information from the higher-order tensor field. Due to
the fractional Poincaré index of the degenerate points, these
vector fields are only piecewise continuous. The lines along
which discontinuities occur are a new type of topological
feature. We clarified their behavior for orders three and four.
We have developed algorithms to numerically extract degen-
erate points and lines of discontinuity, and applied them to
higher-order derivatives and higher-order structure tensors.

The geometric constraint from [KE10] is the only
symmetric higher-order tensor decomposition that we are
presently aware of that yields unique vector fields, and thus
lends itself to topological analysis. Our future work will try
to identify alternative constraints that may lead to unique and
efficiently computable tensor decompositions, and might be
more interpretable in applications such as diffusion imag-
ing. Since many medical and scientific datasets are three-
dimensional, we will also pursue 3D tensor decompositions.

We believe that ultimately, the combination of applica-
tion-specific constraints and reliable numerical methods for
tensor decomposition will allow us to produce expressive vi-
sualizations of higher-order tensor fields, a type of scientific
data whose complexity still presents a challenge at the cur-
rent state of the art. We consider our present work an impor-
tant first step towards that goal.
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