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Abstract

We present a method for enhancing the visual qual-
ity of existing digital elevation models textured with or-
thophotos, using a sparse set of unordered, high resolution
photographs. After an initial manual selection of corre-
spondence points, we automatically register the input pho-
tographs to the given terrain data set using robust image-
based modeling techniques. To combine the geo-registered
images on the terrain surface, we propose a compositing
algorithm that ensures smooth transitions between the im-
ages while at the same time preserving the fine details. The
resulting textures are inserted into the quadtree representa-
tion of a terrain rendering engine to allow an efficient real-
time visualization. We demonstrate our method on an HRSC
terrain data set and a collection of high resolution photos
of Turtmann valley in Switzerland.

1 Introduction

Since their origin in the late 1950s, digital elevation
models (DEMs) along with the corresponding aerial im-
agery have found wide application in various disciplines
such as mapping, remote sensing, land planning and com-
munications. During this same time, acquisition and pro-
cessing of terrain data as well as corresponding visualiza-
tion techniques have continuously progressed so that nowa-
days a real-time visualization of large, high-resolution ter-
rain data sets has become feasible. However, a major draw-
back of aerial imagery is the irregular sampling of the
terrain surface leading to a coarse representation of steep
slopes while overhangs are not captured at all. In addition
to poor visual quality, this severely limits the applicability
of the data in disciplines such as geology or geomorphol-
ogy.
Considering the quality and availability of today’s digital
cameras, the use of high resolution photos offers an easy
and affordable way to capture additional information in ar-

eas of interest. Concerning the necessary fusion of the dif-
ferent data two main challenges arise: registration and com-
positing. Registration involves the recovering of the photos’
camera parameters in order to place them into a common
3D coordinate system with respect to the DEM. The essen-
tial problems in compositing the registered images include
the choice of a parameterization of the compositing surface,
a selection of pixels that contribute to the final image and a
blending of these pixels to minimize visible seams, blur and
ghosting.
We present in this paper a method for enhancing the visual
quality of existing digital elevation models textured with
orthophotos, using a sparse set of unordered, high resolu-
tion photographs. As particular contributions, our paper
presents:

• an extension of state-of-the-art structure from motion
procedures by integrating the given textured DEM into
the optimization,

• a fast color matching algorithm between multiple,
overlapping images to remove large scale color and
lightness shifts,

• a high-quality patchwise blending approach in the tex-
ture domain using a local reparameterization of the ter-
rain surface.

Figure 1 provides a high level overview of the process-
ing pipeline. As a preprocessing step, we reparameterize
steep areas of the terrain surface in order to obtain a rea-
sonable representation for the final textures. In the registra-
tion process we extract distinctive features from each image
and match them to establish global correspondences. We
utilize an interactive technique to estimate an initial geo-
referenced camera and use it to initialize an incremental
structure from motion (SfM) procedure in which the re-
maining cameras are added one by one. Once the images
have been registered they are combined to textures for the
terrain in a compositing step. Compositing starts by de-
termining visibility for each view in order to identify the

Proceedings of 3DPVT'08 - the Fourth International Symposium on 3D Data Processing, Visualization and Transmission

June 18 - 20, 2008, Georgia Institute of Technology, Atlanta, GA, USA



Input
Photos

Textured 
DEM

Registration

Feature detection

Feature matching

Structure from motion

Compositing

Visibility computation

Color matching

Blending

Output

Enhanced 
textured 

DEM

Reparameterization

Figure 1. Overview of our approach to enhance ortho-textured DEMs using photographs.

regions on the terrain surface valid for texturing with the re-
spective image. After that, the registered photos are merged
in a two-step procedure. First, the color distributions in the
images are matched in order to remove large scale color and
lightness shifts. In the second step, the final textures are cre-
ated by applying a weighted pyramid blending technique in
texture space induced by the local reparameterization of the
terrain geometry. Finally, the blended images are inserted
into the quadtree data structure of the terrain rendering en-
gine in order to allow a real-time visualization.
The remainder of this paper is organized as follows: In Sec-
tion 2 we briefly review the relevant literature related to our
work followed by a description of the reparameterization of
the terrain in Section 3. We present our approach to geo-
register the photos in Section 4 and describe the composit-
ing of the images to textures in Section 5. In Section 6
we present results, discuss limitations and future work, and
conclude in Section 7.

2 Related Work

There are two main categories of work related to ours:
image-based modeling and image-based rendering.

2.1 Image-based modeling

Image-based modeling is the process of creating three-
dimensional models from a set of input images [7][22]. Our
image-based modeling approach is based on recent work
in structure from motion, which aims to recover camera
parameters, pose estimates and sparse 3D scene geometry
from image sequences.
In [25], Schaffalitzky et al. presented a method for esti-
mating camera parameters from unordered image sets with
the main focus on an efficient matching of feature points
between photos. Robust techniques for multiview recon-
struction given pairwise euclidean reconstructions were pre-
sented in [16][17]. Our SfM approach is based on the
iterative methods presented in [5][26] in which cameras
are added to a bundle adjustment one by one to increase

robustness. In contrast to previous approaches that used
much smaller and simpler data sets, the work by Snavely et
al. marked the first successful demonstration of SfM tech-
niques applied to large, real-world image sets. To align the
cameras to a DEM they proposed the application of an in-
teractive technique after the reconstruction followed by a
re-run of the SfM.
Unlike them, we align an initial camera to the DEM in ad-
vance, which allows us to make use of the textured DEM
during the SfM procedure. In contrast to the aforemen-
tioned work our main objective is not to estimate 3D ge-
ometry as best as possible but to fit the photos as best as
possible to the existing approximate terrain geometry.

2.2 Image-based rendering

In image-based rendering new views of a scene are syn-
thesized from a set of input images. Creating image-based
texture maps for a 3D object is essentially the problem of
combining texture fragments. A common approach is to ap-
ply triangle-based mosaicing schemes and use feathering to
mask seams afterwards [19][13][24]. In general these tech-
niques rely on a regular triangular mesh model and each
triangle is assigned to the best camera by considering view-
ing angle and visibility.
An alternative to mosaicing schemes is to use per-pixel
weighted filtering over the whole mesh [2][3][20][21].
Smooth weight functions are used to assure continuous tran-
sitions and to avoid visible seams. Similar to Baumberg
[2], we also use a weighted multi-band blending approach
to build view-independent textures from photos. By con-
trast, we perform a patchwise reparameterization of the 3D
geometry and apply the blending in texture space.

3 Reparameterization

We use the terrain rendering system presented in [29]
for the visualization of the textured DEM. It is based on a
quadtree representation of the data where each quadtree tile
contains corresponding geometry and texture data. The goal
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of our method is to create enhanced textures using the input
photos and to store them in the quadtree. Typically, ortho-
projection is used to parameterize terrain geometry which
is reasonable as long as only aerial imagery is involved or if
the terrain is flat, otherwise large distortions are introduced.
To obtain an appropriate representation for textures created
from images from arbitrary views, we perform a local repa-
rameterization of steep slopes in a preprocessing step. In
order to identify the tiles that need to be reparameterized,
we use a simple thresholding scheme. We compute the area
of the tile’s geometry and divide it by the area of its ortho-
projection. If this ratio exceeds a given threshold, we repa-
rameterize the tile.
We use the algorithm presented in [8] to parameterize the
terrain geometry. It quantifies angle and global area defor-
mations simultaneously and lets the user control the relative
importance. We choose the importance in order to obtain a
parameterization that is optimized for a uniform sampling
of the surface. As the reparameterization is performed lo-
cally, i.e. for each tile separately, the introduced distortion is
very low. Since the resulting texture space representation of
a geometry tile has arbitrarily shaped boundaries and arbi-
trary orientation, we optimize it for later storage in a texture
map. To this end, we compute its minimum area bounding
rectangle using rotating calipers [27] and rotate it in such a
way that its bounding box becomes axis aligned.

4 Registration

Our registration approach is based on the method pre-
sented by Snavely et al. in [26]. In their approach they pe-
form a feature detection and matching, followed by an in-
cremental SfM optimization. The resulting relative camera
parameters can optionally be geo-referenced after the SfM
optimization using an interactive technique. In contrast to
them, we geo-register an initial camera before running the
SfM and use it as starting point for the optimization. The
benefit of doing this is that we can exploit the information
contained in the textured DEM during the SfM optimiza-
tion.

4.1 Structure from motion

We use the SIFT keypoint detector [14] to find feature
points in each of the input photos and then perform a pair-
wise matching of features between each image pair. For
outlier removal we estimate a fundamental matrix based on
the detected feature points inside a RANSAC [9] proce-
dure. Feature points that are not compatible with the com-
puted epipolar geometry are removed from the optimiza-
tion. The remaining features are arranged into connected
sets of matching keypoints across multiple images. Given a
set of connected features, we use bundle adjustment to solve

Figure 2. Feature matching between a photo
(right) and the corresponding rendering (left).
A feature in the photo is only compared to a
small subset (green) of the rendering’s fea-
tures that roughly coincide with respect to
position, scale and orientation.

for the camera parameters. Since SfM problems are prone
to bad local minima they require good initial estimates. To
account for this, cameras are added one by one into the op-
timization starting with the camera that contains the largest
number of matches.
In order to be able to exploit the DEM in the following
SfM optimization we geo-reference the initial camera in ad-
vance. For this purpose, we let the user specify a few cor-
respondences between the photo and the textured DEM and
then estimate the camera parameters using the direct linear
transform (DLT) method [11] inside a RANSAC procedure.
We utilize the textured DEM in two ways during the SfM
optimization: first, we use it to obtain 3D estimates for the
features and, second, to create correspondences between the
input photos and the aerial imagery. To this end, we render
the textured DEM from the camera’s point of view with the
resolution of the corresponding photo. The 3D position of
all features in the image can then be initialized using the
respective depth buffer value. Thus, by using the DEM we
always have a 3D estimate for all features in an image avail-
able as soon as the respective camera is estimated.
To establish correspondences between the photo and the
aerial imagery we extract feature points from the rendered
image and match them with the features detected in the
photo. Depending on the quality of the aerial imagery it is
usually not possible to detect many reliable matches. How-
ever, in contrast to the feature matching between photos per-
formed previously, we now have additional information at
hand, namely an estimate of the camera parameters. Con-
sequently, the photo and the rendered image are already
roughly aligned which we can use to reduce the set of po-
tential matching candidates significantly and hence increase
robustness of the matching. Given a feature at position x in
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the photo, we do not compare it to all features found in the
rendered image but only to those features that are within a
certain distance to x in the rendering and also have a similar
scale and orientation (see Figure 2). If a reasonable num-
ber of consistent matches is found they are added as ground
control points to the optimization. Although not every im-
age can be registered directly to the terrain in this manner
the remaining images are indirectly constrained by them.
As a consequence potential drift is reduced and robustness
of the optimization is increased.
When a new camera is added to the optimization we ini-
tialize all its 2D features with 3D points transferred from
matching features in other images that already have a 3D
estimate. Then, we use the DLT technique to estimate the
added camera. Once the camera is estimated, we assign to
the still uninitialized 2D feature points corresponding 3D
points obtained from the DEM and try to add new corre-
spondences between the photo and the aerial imagery. Out-
liers are removed after each run considering their reprojec-
tion error and 3D estimate. This procedure is repeated until
no remaining camera has any matches with features already
in the optimization.

5 Compositing

Once the images have been registered they are combined
to textures for the terrain in a compositing step. Composit-
ing starts by determining visibility for each view in order
to identify the regions on the terrain surface valid for tex-
turing with the respective image. With this information at
hand, the registered photos are combined in a two-step pro-
cedure. First, color distributions in the images are adapted
in order to remove large scale color and lightness shifts. In
the second step, the final textures are created by applying
a weighted pyramid blending approach in texture space in-
duced by the local reparameterization of the terrain geome-
try.

5.1 Visibility Computation

In order to texture the terrain geometry with an image
from a certain view, it is necessary to identify the visible
parts of the surface with respect to this viewpoint and re-
strict texturing accordingly. We use a simple image space
algorithm to determine visibility for each camera separately.
The output of the visibility computation for a certain view
consists of a list of the completely visible triangles and the
visible subpolygons of the partially visible triangles.
Given a camera, we assign each triangle a unique color and
render the terrain geometry from the camera’s viewpoint
into an offscreen buffer. The rendered image is then tra-
versed to identify all rasterized triangles by their color ID.
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nkjnij

nji

nik nki

ejik

eijk ekijimage i
image k

image j

Figure 3. Simple example of three overlap-
ping images and the corresponding graph.

In addition to that, we count the number of rendered pix-
els for each triangle and find its neighbors in image space.
In the next step, we determine if the gathered triangles are
completely visible or only partially visible. To this end,
we render the triangles in question again but this time with
depth test disabled so that they are completely rasterized
and use occlusion queries to count the number of pixels.
If the number of rendered pixels of a triangle in the two
passes coincide, it is completely visible otherwise only par-
tially visible. Finally, we calculate the visible areas of the
partially visible triangles analytically in image space. We
clip each triangle against its image space neighbors that lie
in front of it and against the viewport. The resulting 2D
polygons are unprojected to obtain the visible subpolygons
of the triangle in object space.
Note that even at high framebuffer resolutions it cannot be
ruled out that very small but visible triangles do not result
in a rendered pixel due to discretization. However, we did
not encounter such cases in practice that would have made
any special case handling necessary.

5.2 Color Matching

When texturing a 3D object with photos taken from dif-
ferent viewing angles and with different camera settings,
measured color and intensity values of a surface element
observed in the different photos do usually not agree. The
reasons for this are various and include, for example, view-
dependent lighting effects, such as highlights and specular-
ities, and variations in the camera gain settings and lead to
a mosaic appearance on the surface when combining the
images. To reduce color differences, methods that perform
a color matching between image pairs can be used. How-
ever, applying pairwise color correction to multiple over-
lapping images is difficult considering the potentially com-
plex topology of overlaps and usually does not result in a
globally optimal solution. To overcome this problem, Ban-
nai et al. presented in [1] a simultaneous color matching of
multiple overlapping images based on minimizing per-pixel
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differences in the overlapping regions. Unfortunately, min-
imizing per-pixel differences requires a precise registration
and involves high computational costs.
In contrast to that, we extend the pairwise color matching
approach by Reinhard et al. [23] to a simultaneous matching
of multiple overlapping images. In the original approach
they transferred color characteristics from a source to a tar-
get image in lαβ color space. The new color p′t(x) in the
target image is computed from the old color pt(x) as

p′t(x) =
pt(x)− µt

σt
σs + µs,

where µs, µt are the means and σs, σt the standard devi-
ations of the underlying gaussian distribution in the lαβ
color space of the respective source and target images. Us-
ing color distributions instead of per-pixel differences al-
lows us to handle misregistrations robustly and to reduce
computational costs significantly. In order to define the ob-
jective function for the simultaneous matching we construct
a graph based on the overlapping areas of the images (see
Figure 3). The output of the optimization is a set of new
means µ′ and standard deviations σ′ for each overlapping
area that are used afterwards to modify colors accordingly.
In the first step, we determine the overlapping areas in the
images. For each image pair, we use the information ob-
tained in the previous visibility computation to identify the
areas visible in both views and use them to create two bi-
nary images that define the corresponding overlap regions.
We create for each overlap region oij in image Ii that cor-
responds to an overlap region oji in image Ij nodes nij and
nji, respectively. For each node nij we compute its mean
µij and standard deviation σij using the color values of the
associated overlap region oij . Moreover, we create a color
influence map cij as proposed in [18], that contains for each
pixel in the image a weighting factor that describes the in-
fluence of the respective node to this pixel. The weight is
calculated as the distance of the pixel’s color to the color
distribution associated with the node. We use the Maha-
lanobis distance which reduces to

d(p(x), nij) =
‖p(x)− µij‖

σij

since color channels are decorrelated in lαβ color space.
From this distance we compute the entries in the color in-
fluence map as cij(x) = e−3d(p(x),nij)

2
.

Nodes nij and nji of corresponding overlap areas are con-
nected through ”outer” edges, i.e. edges between images,
whereas ”inner edges” eijk are created between nodes nij

and nik inside the same image Ii. We use the Weighted-
Mean-Variance (WMV) as proposed in [15] to measure the
dissimilarity between the color distributions associated with
the nodes

cost(eij) =
∣∣∣∣µij − µji

α(µ)

∣∣∣∣+ ∣∣∣∣σij − σji

α(σ)

∣∣∣∣ ,

camera j

texture 
space

triangle t

Ptex(t)

Pj(t)
Pi(t)

geometry tile

Figure 4. Triangle of a geometry tile and its
projections in images and texture domain.

where α(µ) and α(σ) are the standard deviations of the
means and standard deviations of all nodes. Edge costs for
an outer edge are weighted by the size of the correspond-
ing overlapping areas. The idea behind costs for the outer
edges is to penalize differences in the distributions of the
color values in the overlapping areas. In contrast to that
edge costs for inner edges are weighted based on the inital
similarity of the nodes’ distributions prior to the optimiza-
tion. Edge costs for the inner edges aim to avoid a diver-
gence of color distributions associated with different nodes
in the same image that were initially similar.
We minimize the sum of all edge costs using the Levenberg-
Marquardt algorithm. Using the resulting new means µ′ and
standard deviations σ′, we compute the new color of a pixel
pi(x) in image Ii as a weighted average of the transforma-
tions induced by all nodes Ni in the image

p′i(x) =
1
|Ni|

∑
Ni

cij(x)
(
pi(x)− µij

σij
σ′ij + µ′ij

)
+(1− cij(x))pi(x).

5.3 Blending

Even after color matching the images do not agree per-
fectly on a per-pixel level due to small misregistrations or
other unmodeled effects. Therefore a good blending strat-
egy is important. A simple approach to blending 2D im-
ages is to perform a weighted sum of overlapping color val-
ues. However, this approach can cause blurring of high fre-
quency detail if there are small registration errors. To pre-
vent this multi-band blending was proposed in [6]. The ba-
sic idea behind multi-band blending is to decompose each
image into frequency bands. Each frequency band is com-
bined separately using a weighting function that fits the size
of the features in the respective band. The composite bands
are finally recombined to obtain the blended image. This

Proceedings of 3DPVT'08 - the Fourth International Symposium on 3D Data Processing, Visualization and Transmission

June 18 - 20, 2008, Georgia Institute of Technology, Atlanta, GA, USA



  

blended
texture

gaussian 
pyramids

laplacian 
pyramids

composite laplacian 
pyramid

weighted 
average filter

recombineproject into 
texture space

decompose

decompose

views

texture
maptexture
maptexture
map

texture
maptexture
maptexture
maptexture
maps

texture
maptexture
maptexture
map
binary
weight
maps

Figure 5. Overview of our patchwise multi-band blending in texture space.

technique allows overlapping images to be blended with-
out introducing visible seams between the images while still
preserving the high frequency details and avoiding notice-
able ghosting.
In contrast to the aforementioned blending in 2D we need
to blend images across a surface in 3D. In order to extend
the 2D blending to 3D, we perform a 2D blending in tex-
ture space for each geometry tile separately. Given a ge-
ometry tile, we identify all cameras it is visible from and
create for each a texture and a corresponding weight map
in texture space (see Figure 5). Smooth transitions between
the photos and the aerial imagery are obtained by including
the aerial imagery into the blending procedure as well by
considering it as an image from another camera. In order
to ensure smooth transitions across tile borders we perform
the blending with slightly overlapping patches.
We generate the texture for a certain view by rendering the
tile’s geometry visible from this view in an offscreen buffer
and texture it with the corresponding photo. Holes in the
texture caused by occlusion generate artifacts during blend-
ing if not handled appropriately. Therefore, we use pre-
multiplied alpha textures where the alpha channel contains
visibility information with respect to the considered view.
Using premultiplied alpha textures allows us to cancel out
the effects of the occluded areas introduced during blending
afterwards by dividing the final blended texture by its alpha
component.
The corresponding weight maps are created by assigning
each pixel a weight wr,i(x) based on the area of the corre-
sponding triangle’s projection Pi(t) in the respective image
(see Figure 4), reflecting camera position as well as image
resolution. In addition to that, we downweight pixels close
to an image’s border as well as pixels near occluded areas

by creating a distance map

di(x) =
∥∥∥∥arg min

x′
{‖x′‖ | Ii(x+ x′) is not visible }

∥∥∥∥ ,
where each pixel is assigned the distance to the closest pixel
not visible in the respective view. We compute correspond-
ing weights from the distances as

wd,i(x) =
(

di(x)
maxx di(x)

)4

and multiplicate them pixelwise with wr,i(x). From these
weights we create binary weight maps as in [4] by taking
the pixelwise maximum.
After the creation of the texture and weight maps we de-
compose each texture into frequency bands by constructing
a laplacian pyramid from it. From each binary weight map
we build a gaussian pyramid to form the blending weights
for the different bands. A composite laplacian is created
from them by a weighted filtering of the different frequency
bands. Then we reconstruct the composite laplacian pyra-
mid to obtain the blended texture patch. Finally, we store
the resulting texture patch in the corresponding quadtree
tile. Optionally, a texture atlas can be created from the tex-
ture patch to further reduce memory requirements. How-
ever, this requires an extrusion of the triangles’ borders to
ensure correct texture filtering.

6 Results and Discussion

We have evaluated our method using a HRSC (High
Resolution Stereo Camera) data set of Turtmann valley.
Turtmann valley is an alpine catchment located in the
southern mountain range of the Valais Alps in Switzerland.
The data set was acquired in 2001 and contains a 1m DEM
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Figure 6. Results obtained with our method. The top row depicts screenshots of the original terrain
textured with orthophotos only. The bottom row shows the terrain from the same viewpoints but now
textured with the input photos in addition to the aerial imagery.

as well as corresponding aerial imagery at 50 cm resolution
covering an area of about 200 km2 kilometers. The input
photo set contains 89 images and was taken by a single
person with a single camera in the course of one week.
All photos have a resolution of 4500 × 3000 pixels. Some
of the photos were taken from the ground others during a
helicopter overflight. Although EXIF tags for the images
are available we did not use them in the SfM optimization.
After feature matching the whole photo set contained
several sets of connected components. Therefore, a manual
interaction by the user to provide good initial estimates was
necessary for each component. Overall, we were able to
match 76 of the 89 input images.
Figure 6 shows an example of the obtained results. The
images in the top row depict screenshots of the original
ortho-textured DEM where the low texture quality at the
steep slopes is clearly visible. In contrast to that, the images
in the bottom row show the enhanced DEM obtained from
the input photos from the same viewpoint. Compared to
the original data set the enhanced representation exhibits
a drastically increased visual quality and information

content, especially at the steep slopes.
Our method allows a targeted enhancement of already ex-
isting terrain data sets. This cannot only be used to increase
resolution at steep slopes but also to add information in
areas that are not clearly visible in an aerial photo due to
shadows, snow coverage or clouds, for example, and such
can avoid an expensive re-acquisition of the whole data set.
Another interesting application is the acquisition of time
varying phenomena. For example, by taking photos of a
glacier every year and registering them to the data set it is
possible to capture its change over time (see e.g. Turtmann
glacier in Figure 6 middle images) without requiring an
elaborate geo-referencing of the photos during acquisition.
An issue we did not address in this paper are ghosting
artifacts due to occlussion by moving objects or unmod-
elled terrain geometry. In the future we plan to extent
the compositing stage of our approach by a detection and
removal of regions of differences [12][28] in the images
prior to blending. We also plan to investigate to what
extent the geometric accuracy of the DEM can be improved
based on the estimated 3D points using multi view stereo
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algorithms [10].

7 Conclusions

This paper has presented a method for enhancing a tex-
tured DEM using an unordered set of input photographs.
Apart from an initial user interaction to provide good esti-
mates to the structure from motion optimization, the input
photos were matched to a high-resolution textured DEM au-
tomatically. A color matching between the photos followed
by a multi-band blending technique created smooth tran-
sitions between the photos despite illumination differences
while at the same time preserving high frequency details.
With the presented method we were able to drastically in-
crease the visual quality and information content of the orig-
inal data set. Moreover, the insertion of the high resolution
textures in the quadtree data structure of a rendering engine
allows an efficient real-time visualization.
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