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Abstract

We advocate the usage of 3D Zernike invariants as descriptors for 3D shape
retrieval. The basis polynomials of this representation facilitate computation of
invariants under rotation, translation and scaling. Some theoretical results have al-
ready been summarized in the past from the aspect of pattern recognition and shape
analysis. We provide practical analysis of these invariants along with algorithms
and computational details. Furthermore, we give a detailed discussion on influence
of the algorithm parameters like the conversion into a volumetric function, number
of utilized coefficients, etc. As is revealed by our study, the 3D Zernike descriptors
are natural extensions of recently introduced spherical harmonics based descrip-
tors. We conduct a comparison of 3D Zernike descriptors against these regarding
computational aspects and shape retrieval performance using several quality mea-
sures and based on experiments on the Princeton Shape Benchmark.

1 Introduction

It can be observed that the proliferation of a specific digital multimedia data type (e.g.
text, images, sounds, video) was followed by emergence of systems facilitating their
retrieval. With the recent advances in 3D data acquisition techniques, graphics hard-
ware and modeling methods, there is an increasing amount of 3D objects spread over
various archives: general objects commonly used e.g. in games or VR environments,
etc. On the other hand, modeling of high fidelity 3D objects is a very cost and time
intensive process – a task which one can potentially get around by reusing already
available models. Another important issue is the efficient exploration of scientific data
represented as 3D entities. Such archives are becoming increasingly popular in the ar-
eas of Biology, Chemistry, Anthropology and Archeology to name a few. Therefore,
since recently, concentrated research efforts are being spent on elaborating techniques
for efficient retrieval of 3D objects.

It has to be mentioned that in the last three decades hundreds of millions of 3D CAD
data was created by the industry, and there is a large body of work to elaborate retrieval
systems for such data. The method described in this paper is a result of efforts going in
a slightly different direction. The ultimate goal of the presented work is to be able to
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retrieve 3D models from repositories containing 3D models of general categories (e.g.
cars, airplanes, humans, etc.) that can be used for instance in computer games or VR
environments. This imposes a notion of similarity that is hard to define precisely a pri-
ori, as there is no single classification of objects that would satisfy every query. In fact,
even inconsistent classifications are conceivable, e.g. one classifying cars by brands,
i.e. BMW, Mercedes, etc. and the other classifying by type, i.e. limousine, SUV, race
car, etc. It is important to note that for the domains where the object similarity is better
defined and the representation more uniform – as in case of most of CAD, chemistry
or archaeological databases – more specialized and powerful descriptors and matching
methods may presumably be built, possibly by extending the descriptors presented in
this paper.

One of major the challenges in the context of data retrieval is to elaborate a suitable
canonical characterization of the entities to be indexed. In the following, we will refer
to this characterization as a descriptor. Since the descriptor serves as a key for the
search process, it decisively influences the performance of the search engine in terms of
computational efficiency and relevance of the results. A simple approach is to annotate
the entities with keywords, however, due to the inherent complexity and multitude of
possible interpretations this proved to be incomplete, insufficient and/or impractical for
almost all data types, cf. [34, 16].

Guided by the fact that for a vast class of objects the shape constitutes a large
portion of abstract object information, we focus in this paper on general shape based
object descriptors. We now can state some requirements that a general shape based
descriptor should obey:

1. Descriptive power - the similarity measure based on the descriptor should de-
liver a similarity ordering that is close to the application driven notion of resem-
blance.

2. Conciseness and ease of indexing- the descriptor should be compact in order
to minimize the storage requirements and accelerate the search by reducing the
dimensionality of the problem. Very importantly, it should provide some means
of indexing and thereby structuring the database in order to further accelerate the
search process.

3. Invariance under transformations - the computed descriptor values have to be
invariant under an application dependent set of transformations. Usually, these
are the similarity transformations, however, some applications like e.g. retrieval
of articulated objects may additionally demand invariance under certain defor-
mations, etc.

A list of additional requirements may be given, which apply in case of search for
general 3D objects that may be found in various archives on the World Wide Web:
insensitiveness to noise and small extra features, independence of 3D object represen-
tation, tessellation, or genus, robustness against arbitrary topological degeneracies.

In this paper we present a 3D shape retrieval method relying on 3D Zernike mo-
ments. These moments are computed as a projection of the function defining the object
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onto a set of orthonormal functions within the unit ball – the 3D Zernike polynomi-
als introduced by Canterakis [10]. From these Canterakis has derived affine invariant
features of 3D objects represented by a volumetric function. To our knowledge, these
results have not been applied to the retrieval of 3D objects so far. Apart from providing
practical details on this technique, we perform a comparison with previous description
methods.

To this end we apply our method to the Princeton Shape Benchmark database [5] of
general polygonal models, e.g. chairs, cars, airplanes, etc. collected from the WWW.
We expect this recently created database to become a standard benchmark for shape
descriptors like those presented in this paper.

We compared the retrieval results with those yielded by the recently introduced
spherical harmonic descriptors (SH descriptors) [16], which are reported to be among
the most powerful at present with respect to general object classes similar to those
mentioned above. As it turns out, the construction of SH and 3D Zernike descriptors
is closely related, which enables a detailed comparison regarding the structure and
performance.

To summarize, the contribution of the paper is threefold: i) we attempt to present
the previous theoretical results of Canterakis [10] on 3D Zernike moments in a self-
contained and accessible way; ii) we present algorithmic solutions leading to a practical
implementation of descriptors and iii) we describe experimental results on performance
of the 3D Zernike descriptors based on the Princeton Shape Benchmark, and finally we
give details on comparison with the SH descriptors.

The outline of the rest of the paper is as follows: in the next section we shortly
review the relevant previous work. In Section 3 we present a general theoretical frame-
work for the computation of rotationally invariant descriptors and delineate the 3D
Zernike descriptors in this framework. We also examine the 3D Zernike descriptors
for accordance with the above criteria and 3D shape retrieval performance. Section
4 gives a discussion on practical issues concerning the implementation of 3D Zernike
descriptors paying special attention to numerical stability of computations. In Section
5 we present our results and conclude in Section 6.

2 Previous Work

2.1 Systems

To date numerous systems for 2D image retrieval have been introduced. To gain a
good overview over the state-of-the-art in this area we refer to the survey papers [34,
17, 31]. As for retrieval of general 3D objects described in the previous section, the
first system was introduced in [29], which was followed by [35]. A very recent result
is presented in [16, 26]. Considering systems covering narrower domains, [1] deals
with anthropological data, [3, 12] facilitate the retrieval of industrial solid models,
[6] explores protein databases. It should be noticed that for the narrower domains
where the notion of similarity is better specified usually other methods for descriptor
construction apply than for broad domains (see [34]). Thus, often better performance
is achieved in systems aiming at narrow domains.
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2.2 Descriptors

In our classification of shape description techniques we adopt a grouping similar to that
of [24] into space domain and scalar transform methods.

2.2.1 Space domain

The space domain shape analysis methods yield non-numeric results, usually an at-
tributed graph, which encodes the spatial and/or topological structure of an object.
Notably, in his seminal work Blum introduced the Medial Axis Transform (MAT) [8],
which was followed by a number of extensions like shock graphs, see e.g. [33], shock
scaffold [23], etc. Forsyth et al. [15] represent 2D image objects by spatial relation-
ships between stylized primitives, [30] uses a similar approach. A further technique
having a long tradition is the geon based representation [7]. As for 3D industrial solid
models, [11, 25] capture geometric and engineering features in a graph, which is sub-
sequently used for similarity estimation. Tangelder and Veltkamp [37] describe an
approach representing the polyhedral objects as weighted point sets. Hilaga et al. [18]
presented a method for general 3D objects utilizing Reeb graphs based on geodesic
distances between points on the mesh, which enabled a deformation invariant recogni-
tion. The methods in this class are attractive since they capture a high level structure of
objects and provide rich descriptors. Unfortunately though, they are computationally
expensive, the MAT based techniques suffer from sensitivity to small perturbations of
the object boundary. Furthermore, the underlying graph representation that is typical
for space domain methods makes the indexing and comparison of objects difficult.

2.2.2 Scalar transform

The scalar transform techniques capture global properties of the objects generating
numbers (scalars or vectors) as shape descriptors.

Histograms A number of methods in 2D rely on color histograms measuring the
color distribution in an image [36]. In [29] this is generalized to constructing 3D his-
tograms of normal vector, color, material, etc. distributions. Ankerst et al. [6] subdivide
the space into spherical shells and sectors around the center of gravity of an object, the
resulting partitions correspond to the bins of the 3D shape histogram. Kazhdan et al.
describe a reflective symmetry descriptor in [21], Osada et al. [28] compute histograms
based on geometric statistics of the boundary of 3D objects. Unfortunately, these de-
scriptors usually provide an insufficient discrimination between objects.

Projection based techniques Some techniques both in 2D and in 3D are based on
coefficients yielded by compression transforms like the cosine [32] or wavelet trans-
form e.g. in [20]. Fourier descriptors [42] have been applied in 2D, however, these are
hard to generalize to 3D due to the difficulties in parameterizing 3D object boundaries.

Moments can generally be defined as projections of the function defining the object
onto a set of functions characteristic to the given moment. Since Hu [19] popularized
the usage of image moments in 2D pattern recognition, they have found numerous
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applications. Teague [38] was first to suggest the usage of orthogonal functions to
construct moments. Subsequently, several 2D moments have been elaborated and eval-
uated [39]: geometrical, Legendre, Fourier-Mellin, Zernike, pseudo-Zenike moments.
For 3D objects geometrical moments have been used in [14, 27], and a spherical har-
monic decomposition was used by Vranic and Saupe [41]. The main drawback of these
methods is that prior to computations a canonical pose of objects has to be determined,
which often proves to be unstable, as discussed in [16]. Funkhouser et al. [16] profit
from the invariance properties of spherical harmonics and present a translation and ro-
tation invariant descriptor. The main idea behind this is to decompose the 3D space
into concentric spherical shells and compute rotationally invariant representations of
these subspaces. In this way a descriptor was constructed which was experimentally
shown to be superior over other 3D techniques with regard to shape retrieval perfor-
mance. In [39], 2D Zernike moments were found to be superior over others in terms
of noise sensitivity, information redundancy and discrimination power. Guided by this,
Canterakis [10] generalized the classical 2D Zernike polynomials to 3D, however, in
his work Canterakis considered mostly theoretical aspects.

3 3D Zernike Moments and Descriptors

This section gives a systematic construction of 3D Zernike moments and descriptors.
We attempt to describe a framework providing a general approach to construct rotation
invariant descriptors. We also recall the relevant results of Canterakis [10] and describe
our improvements.

3.1 Moments

Moments in the context of shape analysis are defined as projections of the (square
integrable) object functionf ∈ L2 onto a set of functionsΨ = {ψi}, i ∈ N over the
domainΩ. The projection is computed as a dot product defined on the Hilbert space of
finite energy functionsL2:

µi = 〈 f ,ψi〉.

The behavior and properties of a particular moment based representation are therefore
determined by the set of functionsΨ.

We now consider the desirable properties of a descriptor based on moments and
subsequently give a general formula for computation of moments obeying these prop-
erties for the two and three dimensional case.

1. Invariance. Let F ( f ) be a set of descriptors computed on the functionf defin-
ing the object, and letG be a group of transformations. The invariance ofF
under the action ofG can be defined as follows:

F (g f) = F ( f ),

whereg∈G. A typical requirement is the invariance under the action of similar-
ity transformations, i.e. uniform scaling, reflection, translation and rotation.
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2. Orthonormality. The collection of functionsΨ is orthonormal, if

〈ψi ,ψ j〉 = δi j ,

whereψi ,ψ j ∈ Ψ andδi j is the Kronecker delta.

3. Completeness.The set of functionsΨ forms a complete system if for anyf ∈ L2,

lim
n→∞

|| f −
n

∑
i=0

〈 f ,ψi〉ψi ||2 = 0,

where||.|| denotes theL2-norm. Complete orthonormal function collections are
said to form a basis of the function space on the domainΩ.

Concerning the invariance, most approaches transform the object into a canonical
pose: translate the center of gravity of the object into the origin and normalize the
area/volume or radius of the bounding circle/sphere. The rotation invariance may sub-
sequently be achieved by aligning the principal axes of the object with the coordinate
system axes. However, as has been investigated by [16], this last step is often unreliable
and leads to reduced retrieval performance. Based on these observations, in our choice
of Ψ we will favor representations yielding a more stable rotation invariance.

The orthogonality of our function collection, i.e. the mutual independence of com-
puted features is an important property, since it implies that a set of features will not
contain redundant information. The non-orthogonality (as in the case of geometrical
moments based on monomials) means that some characteristics of the objects will be
over-represented during the comparison. The classical 2D Zernike polynomials are or-
thonormal within the unit circle. They therefore deliver independent features, and are
shown to be superior over the geometrical moments in terms of retrieval performance.
The additional normalization is essentially a convenience criterion, as this property
allows for a canonical formulation of projections of functions.

The completeness property implies that we are able to reconstruct approximations
of the original object from moments. The approximations are getting finer with in-
creasing numbern of moments and converge to the original object at infinity. This is
of considerable practical importance, since the ability to reconstruct allows us to infer
a higher bound on the amount of object information encoded by a given number of
moments. Another related practical property that may be inferred from reconstructions
is the multiscale nature of the descriptors allowing an efficient coarse-to-fine search.
See Section 5.3 for a reconstruction experiment.

3.2 Selection of basis functions

To sum up, we are looking for sets of functions forming complete orthogonal systems
and allowing for construction of moments that are invariant under rotation transforma-
tions. As it turns out, a straightforward solution is essentially a tensor product formu-
lation and consists of two ingredients. First, one has to choose an angular function set
{Sl (ϕ)} or {Sm

l (ϕ,ϑ)} defined on the unit circle or sphere, respectively, that is orthog-
onal and has subspaces invariant under the action of the rotation group. Second, the
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circular or spherical function is modulated by a suitable radial functionRm
nl(r) while

maintaining the orthonormality. Note that in general a particular functionR may de-
pend on indicesl andm, which implies a dependency on the angular function. The
radial polynomials of both the classical 2D and the new 3D Zernike functions depend
onn andl .

Let B2 andB3 denote the unit disc and unit ball, respectively. The general formulas
in polar and spherical coordinates for the generation of momentsµ possessing the
above properties are:

µln = 〈 f ,RnlSl 〉B2 =
∫ 1

0

∫ 2π

0
f (r,ϕ)Rnl(r)Sl (ϕ)rdϕdr

and

µ
m
ln = 〈 f ,Rm

nlS
m
l 〉B3 =

∫ 1

0

∫
π

0

∫ 2π

0
f (r,ϕ,ϑ)Rm

nl(r)S
m
l (ϕ,ϑ)sin(ϑ)dϑdϕdr

for the two and three dimensional case, respectively. The choice of an appropriate
angular function seems to be crucial, therefore we first summarize some observations
that have been made in the 2D case and then move on to 3D.

3.2.1 2D Zernike moments

In 2D, a suitable angular function has proven to be:

Sl (ϕ) = eil ϕ , (1)

which is essentially the familiar Fourier basis function. It has been shown e.g. by
Khotanzad and Hong [22] that for such functions the following relation applies:

|〈 f (ϕ +ϕ0),eil ϕ〉S1| = |〈 f (ϕ),eil ϕ〉S1|.

This implies that by projecting a functionf defined on the circle onto a basis of above
functions (Eqn. 1), and computing the norms of these projections, we obtain descriptors
of f that are invariant under the action of 2D rotations. The radial polynomialRnl for
the 2D Zernike functionsZnl(r,ϕ) = Rnl(r)eil ϕ is defined so that the resulting basisZnl

is orthonormal, refer e.g. to [22] for exact definition of the radial polynomials.

3.2.2 3D Zernike moments

Using the general construction rule derived above, we now derive the 3D Zernike mo-
ments (see [10] and [9] for details).

Spherical harmonics Motivated by the facts summarized in the previous subsection
and recalling that spherical harmonics on the sphere have properties similar to the func-
tions of Eqn. 1, we continue with the description of spherical harmonics.

Spherical harmonics form a Fourier basis on a sphere much like the familiar sines
and cosines do on a line or a circle. Spherical harmonicsYm

l are given by:

Ym
l (ϑ ,ϕ) = Nm

l Pm
l (cosϑ)eimϕ ,
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whereNm
l is a normalization factor

Nm
l =

√
2l +1

4π

(l −m)!
(l +m)!

,

andPm
l denotes the associated Legendre functions.

Invariance properties The vector of spherical harmonics

Y l = (Yl
l ,Yl−1

l ,Yl−2
l , . . . ,Y−l

l )t (2)

for a given l forms the basis for a(2l + 1)-dimensional subspace which is invariant
under the operations of the full rotation group1. This can be formulated as

Y l (ϑ +ϑ0,ϕ +ϕ0) = ol (ϑ0,ϕ0)Y l (ϑ ,ϕ), (3)

whereol is a unitary matrix referred to asl -th representation of the three dimensional
rotation groupSO(3). Furthermore, this subspace is irreducible that is, it cannot be
split into smaller subspaces which are also invariant under the rotation group. Since
rotations do not change the norm of functions, in consequence of Eqn. 3, after project-
ing a function f defined on the unit sphereS2 onto the functions of the vectorY l , we
obtain invariant featuresµl of f by computing the norms of the so computed vectors:

µl =

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
〈 f ,Yl

l (ϑ +ϑ0,ϕ +ϕ0)〉S2

〈 f ,Yl−1
l (ϑ +ϑ0,ϕ +ϕ0)〉S2

...
〈 f ,Yl−1

l (ϑ +ϑ0,ϕ +ϕ0)〉S2

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
〈 f ,Yl

l (ϑ ,ϕ)〉S2

〈 f ,Yl−1
l (ϑ ,ϕ)〉S2

...
〈 f ,Yl−1

l (ϑ ,ϕ)〉S2

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣ (4)

As a next step, we have to augment this representation to cover the three dimensional
space.

Harmonic polynomials Canterakis based his derivations on harmonic polynomials
which finally enabled him to formulate the 3D Zernike polynomials as homogenous
polynomials in the Cartesian coordinatesx, y andz.

Let us define the conversion between Cartesian and spherical coordinates byx =
|x|ξ = rξ = r(sinϑ cosϕ,sinϑ sinϕ,cosϕ)T . The harmonic polynomialsem

l are de-
fined as

em
l (x) = r lYm

l (ϑ ,ϕ).

Using the integral formula for associated Legendre functions [13] and converting into
Cartesian coordinates, we can express the harmonic polynomials as

em
l (x) = cm

l r l
(

ix−y
2

)m
zl−m

·∑b l−m
2 c

µ=0

(
l
µ

)(
l −µ

m+ µ

)(
− x2+y2

4z2

)µ

,
(5)

1A set{ψi} of vectors is said to span an invariant subspaceVs under a given set of group operations{g j}
if g j ψi ∈Vs ∀i, j.
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wherecm
l are normalization factors:

cm
l = c−m

l =

√
(2l +1)(l +m)!(l −m)!

l !
.

The above formula yields homogenous polynomials form> 0. Form< 0 the following
symmetry relation is used:

e−m
l (x) = (−1)mem

l (x), (6)

which yields homogenous polynomials in this case as well. It is easy to see that an
invariance relation similar to that of Eqn. 4 applies for the harmonic polynomial.

Derivation of 3D Zernike moments The 3D Zernike functionsZm
nl are defined as

Zm
nl(x) = Rnl(r) ·Ym

l (ϑ ,φ)

while restrictingl so thatl ≤ n and(n− l) be an even number. The above equation can
be rewritten in Cartesian coordinates using the harmonic polynomialsem

l :

Zm
nl(x) =

k

∑
ν=0

qν
kl |x|2νem

l (x), (7)

where 2k= n− l and the coefficientsqν
kl are determined to guarantee the orthonormality

of the functions in the unit ball:

qν
kl =

(−1)k

22k

√
2l +4k+3

3

(
2k
k

)
(−1)ν

·

(
k
ν

)(
2(k+ l +ν)+1

2k

)
(

k+ l +ν

k

) .

The radial polynomials used to generate Eqn. 7 expressed explicitly are of the follow-
ing form:

Rnl(r) = r l
k

∑
ν=0

qν
klr

2ν .

The orthonormality relation reads as follows:

3
4π

∫
||x||≤1

Zm
nl(x) ·Zm′

n′ l ′(x)dx = δnn′δll ′δ
mm′

In case of the 3D Zernike functions the same invariance relation applies as in case
of spherical harmonics. If we collect the functions into(2l + 1)-dimensional vectors
Znl = (Zl

nl ,Z
l−1
nl ,Zl−2

nl , . . . ,Z−l
nl )t for eachl , for an arbitrary rotationP we obtain the

relation
Znl(Px) = ol (P)Znl(x). (8)
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We are now able to define the 3D Zernike momentsΩm
nl of an object defined byf as

Ωm
nl :=

3
4π

∫
|x|≤1

f (x)Zm
nl(x)dx.

It is worthwhile noting that due to the symmetry relation of Eqn. 6, a similar relation
holds for the Zernike moments:

Ω−m
nl (x) = (−1)mΩm

nl(x). (9)

It is important to notice that the 3D Zernike momentsΩm
nl are not invariant under rota-

tions. In order to achieve invariance, we apply the approach followed in case of spher-
ical harmonics (cf. Eqn. 4): we collect the moments into(2l +1)-dimensional vectors
Ωnl = (Ωl

nl ,Ω
l−1
nl ,Ωl−2

nl , . . . ,Ω−l
nl )

t and define the rotationally invariant 3D Zernike de-
scriptorsFnl as norms of vectorsΩnl :

Fnl := ||Ωnl ||. (10)

Reconstruction Since the functionsZm
nl form a complete orthonormal system, it is

possible to approximate the original functionf by a finite number of 3D Zernike mo-
mentsΩm

nl :
f̂ (x) = ∑

n
∑
l

∑
m

Ωm
nl ·Zm

nl(x). (11)

Here, we sum overn∈ [0,N], l ∈ [0,n] such that(n− l) be an even number andm∈
[−l , l ]. We use the reconstruction to verify how much of the original object information
is included in a set of 3D Zernike moments up to a given ordern = N.

4 Computation of 3D Zernike descriptors

We now consider the computational details. First, let us expandZm
nl of Eqn. 7 using

Eqn. 5:

Zm
nl(x) = cm

l 2−m
k

∑
ν=0

qν
kl

·
ν

∑
α=0

(
ν

α

)
ν−α

∑
β=0

(
ν −α

β

)
·

m

∑
u=0

(−1)m−u
(

m
u

)
iu

·
b l−m

2 c

∑
µ=0

(−1)µ2−2µ

(
l
µ

)(
l −µ

m+ µ

)

·
µ

∑
v=0

(
µ

v

)
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·x2(v+α)+u

·y2(µ−v+β )+m−u

·z2(ν−α−β−µ)+l−m.

Substitutingr = 2(v+α)+u, s= 2(µ−v+β )+m−uandt = 2(ν−α−β −µ)+ l−m
and setting

χ
rst
nlm = cm

l 2−m
k

∑
ν=0

qν
kl

·
ν

∑
α=0

(
ν

α

)
ν−α

∑
β=0

(
ν −α

β

)
·

m

∑
u=0

(−1)m−u
(

m
u

)
iu

·
b l−m

2 c

∑
µ=0

(−1)µ2−2µ

(
l
µ

)(
l −µ

m+ µ

)
·

µ

∑
v=0

(
µ

v

)
,

Zm
nl can be written in a more compact form as a linear combination of monomials of

order up ton
Zm

nl(x) = ∑
r+s+t≤n

χ
rst
nlm ·xryszt (12)

Finally, let us observe that using Eqn. 12, the 3D Zernike momentsΩm
nl of an object

can be written as a linear combination of geometrical moments of order up ton:

Ωm
nl =

3
4π

∑
r+s+t≤n

χ rst
nlmMrst, (13)

whereMrst denotes the geometrical moment of the object scaled to fit in the unit ball:

Mrst :=
∫

|x|≤1
f (x) xrysztdx, (14)

wherex ∈ R3 denotes the vectorx = (x,y,z)t . An important fact implied by Eqn. 13
is that in order to compute the 3D Zernike functions we only have to compute the
geometrical moments instead of evaluating the complex exponential and associated
Legendre function of spherical harmonics. Further important implication is that using
such formulation we may perform the computations on a rectangular grid instead of
having to resample the volumetric object function to get a spherical grid.

4.1 Algorithm

The above observations lead to the following algorithm to compute the 3D Zernike de-
scriptorsFm

nl . The computations have to be conducted for alln, l ,m index combinations
for n∈ [0,N], l ∈ [0,n] such that(n− l) be an even number andm∈ [−l , l ].

The valuesχ rst
nlm for r +s+t ≤ nhave to be determined before starting the algorithm.

Note that this step is independent of a particular object and may be done offline. Since
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for an (n, l ,m) triple, there will typically be a lot of zero coefficients, we store the
values of these together with the indicesr,s, t indexing the corresponding geometrical
moment in a listListnlm

χ .
We now give the steps needed to compute the 3D Zernike moments and descriptors:

1. Normalization. Compute the center of gravity of the object, transform it to the
origin, and scale the object so that it will be mapped into the unit ball.

2. Geometrical moments.Compute all geometrical momentsMrst for each com-
bination of indices, such thatr,s, t ≥ 0 and r + s+ t ≤ N. Refer to the next
subsection for details on this computation.

3. 3D Zernike moments.Compute all Zernike momentsΩm
nl according to Eqn. 13.

Note that the summation has to be conducted only for the nonzero coefficients
χ rst

nlm stored in the listListnlm
χ . Also note that form≤ 0, Ωm

nl may be computed
using the symmetry relation of Eqn. 9.

4. 3D Zernike descriptors. Compute allFnl according to Eqn. 10.

4.2 Geometrical moments

The computation of the geometrical moments is of central importance with respect to
the overall computational efficiency end numerical accuracy of our method.

When working with 2D images or 3D voxel grids, it is usually tempting to use
integral coordinates at grid points and sample the functions accordingly at these point.
Thus, a typical approach to compute the geometrical moments of an object represented
by a 2D or 3D image is the following:

1. Fix a coordinate system with origin at a corner of the grid and axes aligned with
the grid axes. Subsequently, sample all monomials of order up toP at the grid
point positions.

2. Compute the geometrical moments according to Eqn. 14 by summing over the
whole voxel grid. In 3D this may be formulated as follows:

Mrst =
L−1

∑
i=0

M−1

∑
i=0

N−1

∑
i=0

ir jskt f (i, j,k),

whereL,M,N ∈ N denote the grid size in respective dimensions

3. Transform the geometrical moments according to the normalization transforma-
tion of the object. This can easily be accomplished, since scaling can be achieved
by scaling the moments, the moments of the translated object can be represented
in terms of a linear combination of original moments of not greater order.

The first two steps introduce numerical problems. First, the sampling at grid points
implies that we treat the monomial as a function having a constant value within a voxel,
which is determined by the value of the monomial e.g. in the center of the voxel. For
rapidly changing functions, like the monomials of high order, this results in inaccuracy.
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Second, for a 643 grid for instance, the precision of the double precision floating point
number is exceeded already at the order of 9. According to our experience, moments
up to order of 20 are needed to provide a good descriptor.

We treat the first issue by computing the geometrical moments in terms of monomi-
als integrated over the voxels. Since for high orders the 3D Zernike descriptors seem
to discard the values of voxels close to the origin, we normalize the object prior to
computation of moments, thus obtaining considerably better numerical accuracy and
providing a cure to the second problem. These procedures are described in the remain-
der of this section.

4.2.1 Integration.

Let us first consider the 1D case. The functionf is sampled at the sample points{xi},
0≤ i ≤ N−1. We treatf as having constant valuesfi within intervals[xi ,xi+1):

Mp =
∫

f (α)α p dα

=
N−1

∑
i=0

fi

∫ xi+1

xi

α
pdα

=
N−1

∑
i=0

fi
xp+1

i+1 −xp+1
i

p+1
.

The computation of geometrical moments of orderp for 0≤ p≤ P can be formulated
in matrix form: 

M0
M1
...

MP


︸ ︷︷ ︸

M

=


1
2
1
3
...
1

P+1




x0 x1 · · · xN

x2
0 x2

1 · · · x2
N

...
...

...
...

xP
0 xP

1 · · · xP
N


︸ ︷︷ ︸

X

·

·


−1

1 −1
1 · · ·

· · · −1
1


︸ ︷︷ ︸

D


f0
f1
...

fN−1


︸ ︷︷ ︸

F

We note thatX is a Van der Monde with dimensions(P+1)× (N+1), matrixD is of
dimensions(N + 1)×N. During the computation, we first conduct the multiplication
DF yielding a vectorF′

0 of differences:

F′
0 = DF =


f ′0,0
...

f ′0,N−1
f ′0,N

 =


− f0

f0− f1
...

fN−2− fN−1
fN−1

 .

13



Subsequently, we generate the vectorsF′
i by successively multiplying componentwise

with the vector of samplesS= [x0,x1, . . . ,xN]T :

F′
n+1 =


f ′n+1,0

...
f ′n+1,N−1
f ′n+1,N

 =


x0 f ′n,0

...
xN−1 f ′n,N−1

xN f ′n,N


The 1D geometrical momentsMp can thus be computed by adding up the components
of F′

p and multiplying by a factor:

Mp =
1

p+1

N

∑
l=0

f ′p,l .

The 3D geometrical momentsMpqr on aN3 grid can be written as:

Mpqr =
N−1

∑
i=0

xp+1
i+1 −xp+1

i

p+1
·

N−1

∑
j=0

yq+1
j+1−yq+1

i

q+1
·

N−1

∑
k=0

zr+1
k+1−zr+1

i

r +1
fi jk .

In the formula we have a tensor product, which already suggests that the three di-
mensional case can be split into 1D cases and may thus be computed in exactly same
manner as above.

4.2.2 Pre-scaling

The high order radial polynomials of the 3D Zernike function tend to have small values
near the origin. As a consequence, the projections of the object functionf in the
vicinity of the origin are suppressed – these values have relatively small impact on the
final value of a high order 3D Zernike momentΩm

nl . On the other hand, scaling the
object to fit into the unit ball means that we shift the most severe numerical inaccuracy
caused by the floating point representation to the vicinity of the origin, since high order
monomials have values with high negative exponent in this area.

Consequently, in order to obtain an improved numerical accuracy, as a first step we
translate and scale the object according to the normalization transformation discussed
above, and compute the geometrical moments afterwards. As is proven by our results
in Section 6, this considerably improves the numerical accuracy of the final 3D Zernike
descriptors.

5 Results

In this section we describe some practical results of our approach. We first describe our
experimental setting and demonstrate the numerical accuracy of the algorithm and the
reconstruction ability of 3D Zernike moments based representation. We subsequently
specify the quality measures we used to quantify the performance of the descriptors.
Furthermore, we discuss the dependency of the Zernike- as well as the SH descrip-
tor retrieval performance on the voxelization method and number of used invariants.
Finally, we present the results on performance of both types of descriptors.
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5.1 Experimental setting

In our experiments, the discrete volumetric object functions were generated by vox-
elizing the polygonal boundary representations of geometric models. To this end we
used the vxt software library [2]. See Section 5.4 for more details on voxelization.

From the volumetric representation of an object we generate the Zernike descrip-
tors consisting of vectors of respective invariants and store them as search keys. To
determine the similarity between two 3D shapes we compute Euclidean distances be-
tween the corresponding vectors. Our experimental 3D shape retrieval system gener-
ates a similarity ranking of the objects in database to a given query object. Hence, the
presented system is aquery-by-examplesystem.

Test data An important problem we already mentioned in Section 1 is the notion of
similarity, or ground truth classification, which can be used as a reference to measure
against. To obtain results on a widely available standard data set we resort as a solu-
tion to the pre-classifications delivered by the Princeton Shape Benchmark (PSB) [5],
however, it has to be emphasized that other classifications are possible as well. The
current version of PSB contains 1814 models of various categories (animals, plants,
furniture, etc.). We used the base classification to assess the descriptors. It splits the
models into a training set containing 907 objects sorted into 90 classes and a test set
consisting of 907 objects and 92 classes. We used the training set to obtain an optimal
parameter configuration which is then utilized for final evaluation on the test data set.
Note that the base classification of PSB defines hierarchies of nested classes, however,
in our investigations we used only the leaf classes.

As for numerical experiments, we present results generated using 5 objects down-
loaded from www.3dcafe.com.

Spherical harmonic descriptors We compare the performance of 3D Zernike de-
scriptors against the spherical harmonic descriptors introduced very recently by Funkhouser
et al. [16]. These descriptors essentially fit into the model of rotationally invariant de-
scriptor construction we presented in the Section 3, with the difference that the authors
do not use radial polynomials to modulate the spherical harmonics, but sample the
three dimensional space as concentric shells, where the shells are defined by equal ra-
dial intervals. Subsequently, they discretize the shells into equiangular bins, and define
a binary spherical function defined as 1 if there is an object point in such a bin and 0
otherwise. Their object representation consists of a spherical harmonic decomposition
for each shell.

The objects are first voxelized into a 643 grid after a normalization transformation
similar to that described in the previous section. The authors use 32 concentric shells to
define the spherical functions and 16 rotationally invariant spherical harmonic descrip-
tors for each shell, this gives a vector of 512 scalar values for a single object. In order
to obtain a fair comparison, similarly to the 3D Zernike descriptors, we conducted a
parameter tuning to determine how many components yield the best retrieval perfor-
mance, see Section 5.4. For the descriptor computation we use 32 concentric shells
to generate the spherical functions, as suggested by Funkhouser et al., however, we
compute 32 instead of 16 coefficients for each such shell to start with. We then choose
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the count of coefficients which gives optimal retrieval performance. During the search
in a database, the similarity of objects is calculated as Euclidean distance between the
vectors of coefficients.

5.2 Numerical accuracy

Figure 1: The objects used to generate the results of Table 1.

In order to verify the numerical accuracy of our method, we used the GNU MP
arbitrary precision arithmetic library (http://www. swox.com/gmp/) to generate an ac-
curate reference. As already mentioned in the Section 4.2, the accuracy of computa-
tions is decisively influenced by the numerical stability of geometrical moments. We
have implemented three versions of our software: with pre-scaling, with integration
and with both scaling and integration. The results for the set of objects2 depicted in
the Fig. 1 are presented in Table 1. We obtained these results by computing the 3D
Zernike descriptors from Zernike moments of ordern up to 20 and calculating theL2

norm of the difference between a vector of invariants yielded by the respective version
and the precise values computed using the GNU MP. In order to be able to assess the
values of Table 1 we note that the average distance between the objects in the database
(see Section 5.1) is on the order of 0.25, the maximal distance is 0.6. This implies
that the inaccuracy caused by incautious computation of geometrical moments render
the approach unusable. Therefore, both the scaling and the integration are important
components of the numerical calculations.

Integrated Pre-scaled Integrated, Pre-scaled L2 norm

GUITAR 484.5 22.7 0 0.1359
T INVADER 85215.7 796.2 0 0.269
INVCHAIR 874.4 997.2 1.6e-17 0.2812

747 2.6e5 56.7 1.3e-17 0.2039
BALL 1.7e7 2289.7 3.7e-9 0.2141

Table 1: TheL2 error in dependence of the geometrical moment calculation method
and the norm of the descriptors representing the objects.

We note that the computations using the GNU MP library were about two orders of
magnitude slower compared to those using the built-in double precision arithmetic.

2www.3dcafe.com/models/{747.zip, bball.zip, guitar.zip, wheelchr.zip, t-invadr.zip}
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5.3 Reconstruction

Figure 2 demonstrates the reconstruction property of the 3D Zernike moments. We
reconstructed the volumetric discrete representation object using Eqn. 11 on a 243

grid, we subsequently extracted the iso-surfaces to be able to visualize the objects. As
it can be seen, the moments of order up to 20 allow for reconstructing the main object
characteristics while discarding small details.

We note that in case of a large database of 3D objects, the underlying frequency
metaphor may be used to accelerate the search process. We recall that the spherical
harmonics form essentially a Fourier basis on the sphere and the radial polynomials
may also be interpreted analogously in terms of their order. This allows us to generate a
natural hierarchy of multiscale representations and enables the utilization of an efficient
hierarchical search algorithm.

Figure 2: Reconstruction of a spaceship shown as isosurfaces of the reconstructed
volumetric function. The upper left is the voxelized original object. The numbers
below the images indicate the number of Zernike moments that have been used for the
reconstruction.

5.4 Tuning the descriptors

We investigated the influence of several parameters of the descriptor computation on
the retrieval performance, i.e. the voxelization method and number of invariants used
as object characterization. Before we report on these experiments, we define the quality
measures we used to assess a particular setting.

5.4.1 Retrieval quality measures

The goal of a retrieval system is to retrieve relevant documents while holding back
non-relevant one. Measuring the effectiveness of retrieval systems is an open research
area in Information Retrieval (see [40] for more details on this topic).

LetC denote a class of objects and|C| the number of its elements. We quantify our
results based on the following measures (see also [5] for more details):
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• Precision and recall. Having the topk matches delivered by the retrieval sys-
tem withn being the count of relevant objects among these matches, the recall
Rk = n

|C| indicates the ratio of the already retrieved elements ofC. The precision

Pk = Rk
k denotes the ratio of this number tok. Informally, high precision values

indicate that most of the retrieved objects are relevant, which, combined with a
high recall, means that the system has already found most of the desired objects.
Hence, a popular way to describe the performance of retrieval is to generate pre-
cision vs. recall diagrams. However, to compare retrieval results for different
methods, scalar quality measures are more useful.

• Average precision. Intuitively, the higher the precision-recall curve, the better
the retrieval performance. Therefore, the precision averaged over recall values
PC

avg = 1/|C|∑|C|
k=1Pk may be used as a single scalar quality measure.

• First and second tier measure the recall for the top|C| and 2|C| matches, re-
spectively.

• E and F measures.The user is usually most interested in the firstk matches,
e.g. fitting onto the first result page. The E and F measures incorporate both the
precision and recall computed for a fixed number of topk matches:

F =
2

1/Pk +1/Rk
,E =

b2PkRk +PkRk

b2Pk +Rk
.

b indicates the relative importance of precision and recall. We setk = 32 and
b= 0.5, i.e. we assume that 32 thumbnail images representing the objects appear
on a result page and precision and recall are weighted equally.

• Discounted cumulative gain.The intuition behind this measure is that the cor-
rect shapes retrieved sooner are more valuable, as often the user is unwilling to
investigate the objects down the ranking. According to this, the discounted cu-
mulative gain is computed by settinga = 0 and accumulatinga = a+ 1/lg(i)
if the ith object in the ranking is relevant until recall= 100%. Finally, the ac-
cumulated gain is normalized by the best possible value, so that the discounted
cumulative gain isdcg= 1+a

1+1/∑|C|
i=2 lg(i)

.

For all the measures the maximal value is 1.0 and higher values imply better per-
formance. The above quantities apply always for a particular query. In order to get
overview results over individual classes, we average the measures over query objects
from these classes. To get macro level results, we further average the quantities over
all classes in the classification.

5.4.2 Parameter choice

We analyzed the influence of the following parameters:

• Voxelization method: we voxelized the polygonal boundary of the objects us-
ing radial linear, Gaussian and binary kernels with varying widths. The support
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Measure Max. value #Coeffs

dcg 0.49 25
Pavg 0.30 29
E 0.128 29
F 0.164 29

First Tier 0.288 21
Second Tier 0.349 30

Measure Max. value #Coeffs

dcg 0.51 135
Pavg 0.333 152
E 0.136 116
F 0.175 116

First Tier 0.312 154
Second Tier 0.381 150

SH Descriptors 3D Zernike descriptors

Table 2: The maxima of macro-averaged retrieval measure values for both types of
descriptors.

width of the kernel indicates the distance in voxel units where the kernel values
decrease to zero. The voxelization rasterizes the polygonal boundary of the ob-
ject; the kernel function determines the thickness and functional profile of the
corresponding volumetric representation of the boundary. We investigated sev-
eral resolutions of the voxel grid as well.

• Number of coefficients: we recall that the invariant description of objects con-
sists of vectors ofFnl (Eqn. 10) for the Zernike descriptor andµl (Eqn. 4) for
each concentric shell of the SH descriptors. To investigate the impact of the
number of coefficients we successively added coefficients of higher order to the
vectorial representation of each descriptor. Note that in case of SH descriptors
we simultaneously add a coefficient of incrementedl for each concentric shell,
while in case of the Zernike descriptors we add one coefficient each in order
F00,F11,F20,F22,F31,F33, . . . (the value of(n− l) must be even, Eqn. 7 and 10).
Utilizing low number of coefficients we discard the high frequencies of the ob-
jects, while for high values detail information is incorporated into the comparison
as well.

As for voxelization we found the binary kernel and resolution of 643 to yield the
best results. Moreover, for all measures and for both descriptors the unit kernel width
resulted in best performance macro-averaged over the leaf classes of the base training
classification of PSB. The maximal macro-averaged measure values for the six scalar
measures and the corresponding coefficient counts are summarized in Table 2. The
plots depicting the change in macro-averaged measure values caused by successively
adding coefficients to the representations can be found in Figure 4.

As it can be seen, the best performance is obtained for different coefficient counts
in case of both descriptors. However, the plots in Figure 4 indicate that after reaching a
certain count of coefficients, the change of values is not significant, when adding further
coefficients. Thus, as a simple solution one could choose a coefficient count of about
30 and 152 for the SH and 3D Zernike descriptors, respectively. To make the choice
deterministic, we use the following straightforward procedure for each descriptor type:
we normalize the plots by scaling the maxima to an unit and sum up the resulting
scaled measure values. Subsequently, we choose the coefficient count corresponding
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to the maximum of this sum. The coefficient counts obtained by this approach are 29
and 154 for the SH- and 3D Zernike descriptors, respectively.
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Figure 3: Plots of the macro-averaged retrieval performance measure values against
increasing coefficient count. Beside measuring the performance, the plots confirm the
multiscale nature of both descriptors, i.e. that by adding coefficients of higher order to
the representation, the overall performance of the system improves. This fact may be
used to accelerate the search process in large databases using a coarse-to-fine search
strategy.

5.5 Retrieval performance

To summarize the results of the previous subsection, the best performance on the train-
ing base classification of PSB were obtained using a unit kernel width binary voxeliza-
tion in a 643 voxel grid. Furthermore, in what follows, we will use coefficient counts
of 29 and 154 for the SH and 3D Zernike descriptor generation, respectively. As the
coefficients have to be computed for each of the 32 concentric shells in case of the SH
descriptors (see Section 5.1), 32· 29 = 928 floating point values are needed to store
these descriptors without compression. For the 3D Zernike descriptors only 154 floats
are necessary. This means that even if one discards some number of spherical harmonic
coefficients to trade retrieval performance for less storage, the 3D Zernike descriptors
are considerably more compact. In consequence, the dimensionality of the search prob-
lem is reduced, which supports the effectiveness of the search process, and there is less
storage overhead for an object.

Both 3D Zernike and spherical harmonic descriptors achieve rotation invariance by
exploiting the invariance properties of the spherical harmonics. However, by merely
sampling the space in radial direction, the latter descriptor does not capture object ”fre-
quencies” or coherence in this direction, thereby not incorporating such object charac-
teristic information. As shown in Table 3, the 3D Zernike descriptors perform better
on average in spite of their compactness. A plot ofPavg for each class corresponding to
both types of descriptor can be seen in Figure 4. We note that for other measures the
relations in plots are very similar.
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SH 3D Zernike
dcg 0.4635 0.4808
Pavg 0.2879 0.3028
E 0.1237 0.1320
F 0.1578 0.1688

First Tier 0.2675 0.2808
Second Tier 0.3239 0.3417

Table 3: The macro-averaged retrieval performance measures based on the leaf classes
of the base test classification of PSB

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Classes

P
av

g
S

H

eyeglasses 

axe
sedan

one_story_home wheel

fish

door

church

umbrella

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Classes

P
av

g
3D

 Z
er

ni
ke

eyeglasses 

axe
sedan

one_story_home wheel

fish

door

church
umbrella

SH 3D Zernike

Figure 4: Plots ofPavg values averaged over the leaf classes of the base test classifica-
tion of PSB.

Although in average sense the Zernike descriptors perform better, there is a certain
disparity in the results: for some classes the SH descriptor performs better, for some
the 3D Zernike descriptor. To visualize this phenomenon, we subtracted the vectors of
retrieval performance measures corresponding to the SH- and 3D Zernike descriptors,
where each element of the vectors correspond to the measure averaged over the cor-
responding class. We investigated these quantities for all measures separately, and it
turned out that the results were qualitatively almost the same for each type of measure.
Therefore, in order to obtain a clear picture, we illustrate the values in plot of Figure
5 only for Pavg. On thex-axis the classes are represented, the negative and positive
y-values indicate the superiority of the SH- and 3D Zernike descriptor, respectively.

We indicate some of the classes for selected extrema in both directions, as well as
some classes for which the performance was very similar. The detailed data on the
performance can be found at [4]. It is indeed apparent that for some classes the dif-
ference in performance is considerable. Given the similar structure of the descriptors,
this raises the question of what causes this disparity and how the descriptors can be
modified to improve the retrieval performance. Analysis of this question is certainly a
central avenue for future work.
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Figure 5: Per class averaged difference ofPavg between the measure value for the SH-
and 3D Zernike descriptors. On thex-axis the classes are represented, the negative
and positivey-values indicate the superiority of the SH- and 3D Zernike descriptor,
respectively.

Similarly to the spherical harmonic descriptors, the representation as 3D Zernike
descriptors is insensitive to geometric and topological artifacts common to freely avail-
able objects.

Finally, we mention some timing data measured on a 3.06 GHz Pentium 4 with 1
GB RAM; our experimental implementation may be downloaded from [4]. The vox-
elization of objects takes from 0.2s to 12s, depending on the polygon count, the average
voxelization time was about 5s. The computation of 3D Zernike descriptors consist-
ing of 156 coefficients takes 0.25s on a 643 grid, the SH descriptor computation on
the same grid generating 32 coefficients for 32 concentric shells takes 0.2s. Finally,
a retrieval from a database of 907 objects lasts approximately 0.05s and 0.1s for the
3D Zernike descriptors and SH descriptors, respectively. We once again mention that
for larger database the performance can considerably be improved exploiting the mul-
tiscale nature of the representation confirmed by our experiments – see Section 5.3 and
Figure 4.

6 Conclusions and future work

In this paper we utilized the 3D Zernike descriptor for the purpose of retrieval of 3D
objects. We discussed some general rules for the construction of affine invariant object
descriptors and derived the 3D Zernike descriptors within this framework. We fur-
thermore considered the implementational issues: the severe instability of geometrical
moments and hence the 3D Zernike descriptors in case of high orders. As a cure to
this problem, we applied analytical integration within each voxel and scaled the object
prior to computations, thereby achieving high accuracy even for high orders of Zernike
moments. The quality of the descriptor regarding the retrieval performance was ana-
lyzed and verified also with respect to another related recent technique: the spherical
harmonic descriptor. As it turns out, the 3D Zernike descriptors compare favorably to
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recent descriptors for general 3D objects in terms of retrieval performance and robust-
ness against topological and geometrical artifacts plaguing a most of freely available
models.

As for short term future work we plan to investigate the usage of further radial
functions: a wavelet based function seems to be promising, as such basis would allow
for a multi-resolution radial localization of frequencies. As already mentioned, the
closer analysis of the relation of the compared SH- and 3D Zernike descriptors is a
task we will tackle in the near future, as well. Moreover, we intend to elaborate a
new distance function between the descriptors, as we suspect that different coefficients
contribute to a different extent to the overall shape information.

7 Acknowledgments

We thank Roland Wahl, Patrick Degener and Gabriel Zachmann for the insightful dis-
cussions. Special thanks go to Szabolcs Hódossy for his invaluable support as well.
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