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ABSTRACT
Content based 3D shape retrieval for broad domains like the World
Wide Web has recently gained considerable attention in Computer
Graphics community. One of the main challenges in this context
is the mapping of 3D objects into compact canonical representa-
tions referred to as descriptors, which serve as search keys during
the retrieval process. The descriptors should have certain desirable
properties like invariance under scaling, rotation and translation.
Very importantly, they should possess descriptive power providing
a basis for similarity measure between three-dimensional objects
which is close to the human notion of resemblance.

In this paper we advocate the usage of so-called 3D Zernike in-
variants as descriptors for content based 3D shape retrieval. The
basis polynomials of this representation facilitate computation of
invariants under the above transformations. Some theoretical re-
sults have already been summarized in the past from the aspect of
pattern recognition and shape analysis. We provide practical anal-
ysis of these invariants along with algorithms and computational
details. Furthermore, we give a detailed discussion on influence
of the algorithm parameters like type and resolution of the conver-
sion into a volumetric function, number of utilized coefficients, etc.
As is revealed by our study, the 3D Zernike descriptors are natural
extensions of spherical harmonics based descriptors, which are re-
ported to be among the most successful representations at present.
We conduct a comparison of 3D Zernike descriptors against these
regarding computational aspects and shape retrieval performance.

Categories and Subject Descriptors
I.4.10 [Computing Methodologies]: Image Representation —Im-
age Representation; I.3.5 [Computing Methodologies]: Computer
Graphics—Computational Geometry and Object Modeling; H.3.3
[Information Systems]: Information Storage and Retrieval—In-
formation Search and Retrieval
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1. INTRODUCTION
It can be observed that the proliferation of a specific digital mul-

timedia data type (e.g. text, images, sounds, video) was followed
by emergence of systems facilitating their content based retrieval.
With the recent advances in 3D data acquisition techniques, graph-
ics hardware and modeling methods, there is an increasing amount
of 3D objects spread over various archives: general objects com-
monly used e.g. in games or VR environments, solid models of
industrial parts, etc. On the other hand, modeling of high fidelity
3D objects is a very cost and time intensive process – a task which
one can potentially get around by reusing already available mod-
els. Another important issue is the efficient exploration of scien-
tific data represented as 3D entities. Such archives are becoming
increasingly popular in the areas of Biology, Chemistry, Anthro-
pology and Archeology to name a few. Therefore, since recently,
concentrated research efforts are being spent on elaborating tech-
niques for efficient content based retrieval of 3D objects.

One of major challenges in the context of data retrieval is to elab-
orate a suitable canonical characterization of the entities to be in-
dexed. In the following, we will refer to this characterization as a
descriptor. Since the descriptor serves as a key for the search pro-
cess, it decisively influences the performance of the search engine
in terms of computational efficiency and relevance of the results. A
simple approach is to annotate the entities with keywords, however,
due to the inherent complexity and multitude of possible interpre-
tations this proved to be incomplete, insufficient and/or impractical
for almost all data types, cf. [30, 13].

Guided by the fact that for a vast class of objects the shape con-
stitutes a large portion of abstract object information, we focus
in this paper on general shape based object descriptors. We now
can state some requirements that a general shape based descriptor
should obey:

1. Descriptive power - the similarity measure based on the de-
scriptor should deliver a similarity ordering that is close to
the application driven notion of resemblance.

2. Conciseness and ease of indexing - the descriptor should be
compact in order to minimize the storage requirements and
accelerate the search by reducing the dimensionality of the
problem. Very importantly, it should provide some means
of indexing and thereby structuring the database in order to
further accelerate the search process.

3. Invariance under transformations - the computed descrip-
tor values have to be invariant under an application depen-



dent set of transformations. Usually, these are the similar-
ity transformations, however, some applications like e.g. re-
trieval of articulated objects may additionally demand invari-
ance under certain deformations, etc.

A list of additional requirements may be given, which apply in
case of search for general 3D objects that may be found in vari-
ous archives on the World Wide Web: insensitiveness to noise and
small extra features, independence of 3D object representation, tes-
sellation, or genus, robustness against arbitrary topological degen-
eracies.

In this paper we present a 3D content based retrieval method re-
lying on 3D Zernike moments. These moments are computed as a
projection of the function defining the object onto a set of orthonor-
mal functions within the unit ball – the 3D Zernike polynomials
introduced by Canterakis [7]. From these Canterakis has derived
affine invariant features of 3D objects represented by a volumetric
function. To our knowledge, these results have not been applied to
the content based retrieval of 3D objects so far. In this paper we
perform a comparison with previous description methods. To this
end we apply our method to a small database of general objects col-
lected from the WWW and compare the results with those yielded
by the recently introduced spherical harmonic descriptors (SH de-
scriptors) [13], which are reported to be among the most powerful
at present. As it turns out, the construction of SH and 3D Zernike
descriptors is closely related, which enables a detailed comparison
regarding the structure and performance.

The outline of the rest of the paper is as follows: in the next
section we shortly review the relevant previous work. In Section
3 we present a general theoretical framework for the computation
of rotationally invariant descriptors and delineate the 3D Zernike
descriptors in this framework. We also examine the 3D Zernike
descriptors for accordance with the above criteria and 3D shape
retrieval performance. Section 4 gives a discussion on practical
issues concerning the implementation of 3D Zernike descriptors
paying special attention to numerical stability of computations. In
Section 5 we present our results and conclude in Section 6.

2. PREVIOUS WORK

2.1 Systems
Up to date numerous systems for 2D image retrieval have been

introduced. To gain a good overview over the state-of-the-art in
this area we refer to the survey papers [30, 14, 27]. As for content
based retrieval of general 3D objects, the first system was intro-
duced in [25], which was followed by [31]. A very recent result
is presented in [13, 22]. Considering systems covering narrower
domains, [1] deals with anthropological data, [3, 9] facilitate the
retrieval of industrial solid models, [4] explores protein databases.

2.2 Spatial domain
The spatial domain shape analysis methods yield non-numeric

results, usually an attributed graph, which encodes the spatial and/or
topological structure of an object. Notably, in his seminal work
Blum introduced the Medial Axis Transform (MAT) [6], which
was followed by a number of extensions like shock graphs, see
e.g. [29], shock scaffold [20], etc. Forsyth et al. [12] represent
2D image objects by spatial relationships between stylized primi-
tives, [26] uses a similar approach. A further technique having a
long tradition is the geon based representation [5]. As for 3D in-
dustrial solid models, [8, 21] capture geometric and engineering
features in a graph, which is subsequently used for similarity es-
timation. Tangelder and Veltkamp [33] describe an approach rep-

resenting the polyhedral objects as weighted point sets. Hilaga et
al. [15] presented a method for general 3D objects utilizing Reeb
graphs based on geodesic distances between points on the mesh,
which enabled a deformation invariant recognition. The methods
in this class are attractive since they capture the high level structure
of objects. Unfortunately though, they are computationally expen-
sive, most of them suffer from noise sensitivity, and the underlying
graph representation makes the indexing and comparison of objects
very difficult.

2.3 Scalar transform
The scalar transform techniques capture global properties of the

objects generating numbers (scalars or vectors) as shape descrip-
tors.

2.3.1 Histograms
A number of methods in 2D rely on color histograms measuring

the color distribution in an image [32]. In [25] this is generalized to
constructing 3D histograms of normal vector, color, material, etc.
distributions. Ankerst et al. [4] subdivide the space into shells and
sectors around the center of gravity of an object, the resulting par-
titions correspond to the bins of the 3D shape histogram. Kazhdan
et al. describe a reflective symmetry descriptor in [18], Osada et
al. [24] compute histograms based on geometric statistics of the
boundary of 3D objects. Unfortunately, these descriptors usually
provide an insufficient discrimination between objects.

2.3.2 Projection based techniques
Some techniques both in 2D and in 3D are based on coefficients

yielded by compression transforms like the cosine [28] or wavelet
transform e.g. in [17]. Fourier descriptors [37] have been applied
in 2D, however, these are hard to generalize to 3D due to the diffi-
culties in parameterizing 3D object boundaries.

Moments can generally be defined as projections of the func-
tion defining the object onto a set of functions characteristic to the
given moment. Since Hu [16] popularized the usage of image mo-
ments in 2D pattern recognition, they have found numerous ap-
plications. Teague [34] was first to suggest the usage of orthog-
onal functions to construct moments. Subsequently, several 2D
moments have been elaborated and evaluated [35]: geometrical,
Legendre, Fourier-Mellin, Zernike, pseudo-Zenike moments. 3D
geometrical moments have been used in [11, 23], and a spherical
harmonic decomposition was used by Vranic and Saupe [36]. The
main drawback of these methods is that prior to computations a
canonical pose of objects has to be determined, which often proves
to be instable, as discussed in [13]. Funkhouser et al. [13] profit
from the invariance properties of spherical harmonics and present
an affine invariant descriptor. The main idea behind this is to de-
compose the 3D space into concentric shells and define rotation-
ally invariant representations of these subspaces. In this way a
descriptor was constructed which was proven to be superior over
other 3D techniques with regard to shape retrieval performance. In
[35] 2D Zernike moments were found to be superior over others in
terms of noise sensitivity, information redundancy and discrimina-
tion power. Guided by this, Canterakis [7] generalized the classical
2D Zernike polynomials to 3D, however, in his work Canterakis
considered exclusively theoretical aspects.

3. 3D ZERNIKE MOMENTS AND DESCRIP-
TORS

This section gives a systematic construction of 3D Zernike mo-
ments and descriptors. We attempt to describe a framework pro-



viding a general approach to handle this issue. We also recall the
relevant results of Canterakis [7] and describe our improvements.

3.1 Moments
Moments in the context of shape analysis are defined as projec-

tions of the (square integrable) object function f ∈ L2 onto a set of
functions Ψ = {ψi}, i ∈ N over the domain Ω:

µi = 〈 f ,ψi〉 =
∫

Ω
f (x) ·ψi(x) dx.

The behavior and properties of a particular moment based repre-
sentation are therefore determined by the set of functions Ψ.

We now consider the desirable properties of a descriptor based
on moments and subsequently give a general formula for compu-
tation of moments obeying these properties for the two and three
dimensional case.

1. Invariance. Let F ( f ) be a set of descriptors computed on
the function f defining the object, and let G be a group of
transformations. The invariance of F under the action of G
can be defined as follows:

F (g f ) = F ( f ),

where g ∈ G. A typical requirement is the invariance under
the action of similarity transformations, i.e. uniform scaling,
reflection, translation and rotation.

2. Orthonormality. The collection of functions Ψ is orthonor-
mal, if

〈ψi,ψ j〉 = δi j,

where ψi,ψ j ∈ Ψ and δi j is the Kronecker delta.

3. Completeness. The set of functions Ψ forms a complete sys-
tem if for any f ∈ L2,

lim
n→∞

|| f −
n

∑
i=0

〈 f ,ψi〉ψi||2 = 0,

where || f || denotes the L2-norm. Complete orthonormal func-
tion collections are said to form a basis of the function space
on the domain Ω.

Most approaches transform the object into a canonical pose: trans-
late the center of gravity of the object into the origin and normalize
the area/volume or radius of the bounding circle/sphere. The rota-
tion invariance may subsequently be achieved by aligning the prin-
cipal axes of the object with the coordinate system axes. However,
as has been investigated by [13], this last step is often unstable and
leads to reduced retrieval performance. Based on these observa-
tions, in our choice of Ψ we will favor representations yielding a
more stable rotation invariance.

The orthogonality of our function collection, i.e. the mutual in-
dependence of computed features is an important property, since
it implies that a set of features will not contain redundant infor-
mation. The non-orthogonality (as in the case of geometrical mo-
ments based on monomials) means that some characteristics of the
objects will be over-represented during the comparison. The classi-
cal 2D Zernike polynomials are orthonormal within the unit circle.
They therefore deliver independent features, and are shown to be
superior over the geometrical moments in terms of retrieval perfor-
mance. The additional normalization is essentially a convenience
criterion, since this property allows for a canonical formulation of
projections of functions.

The completeness property implies that we are able to recon-
struct approximations of the original object from moments. The

approximations are getting finer with increasing number n of mo-
ments and converge to the original object at infinity. This is of
considerable practical importance, since the ability to reconstruct
allows us to infer a higher bound on the amount of object informa-
tion encoded by a given number of moments.

3.2 Selection of basis functions
To sum up, we are looking for sets of functions forming com-

plete orthogonal systems and allowing for construction of moments
that are invariant under rotation transformations. As it turns out, a
straightforward solution is essentially a tensor product formulation
and consists of two ingredients. First, one has to choose an an-
gular function set {Sl(ϕ)} or {Sm

l (ϕ ,ϑ)} defined on the circle or
sphere, respectively, that is orthogonal and has subspaces invari-
ant under the action of the rotation group. Second, the circular or
spherical function is modulated by a suitable radial function Rm

nl(r)
while maintaining the orthonormality. Note that in general a par-
ticular function R may depend on indices l and m, which implies a
dependency on the angular function. Also note that for 3D Zernike
moments this dependency is reduced to l, and no dependency at all
for 2D Zernike moments.

The general formula for the generation of moments µ possessing
the above properties is:

µln = 〈 f ,RnlSl〉 =
∫ ∫

f (r,ϕ)Rnl(r)Sl(ϕ)dϕdr

and

µm
ln = 〈 f ,Rm

nlS
m
l 〉 =

∫ ∫ ∫
f (r,ϕ ,ϑ)Rm

nl(r)S
m
l (ϕ ,ϑ)dϑdϕdr

for the two and three dimensional case, respectively. The choice of
an appropriate angular function seems to be crucial, therefore we
first summarize some observations that have been made in the 2D
case and then move on to 3D.

3.2.1 2D Zernike moments
In 2D, a suitable angular function has proven to be:

Sl(ϕ) = eilϕ , (1)

which is essentially the familiar Fourier basis function. It has been
shown e.g. by Khotanzad and Hong [19] that for such functions the
following relation applies:

|〈 f (ϕ +ϕ0),eil(ϕ+ϕ0)〉| = |〈 f (ϕ),eil(ϕ)〉|.
This implies that by projecting a function f defined on the circle
onto a basis of above functions (Eqn. 1), and computing the norms
of these projections, we obtain descriptors of f that are invariant
under the action of 2D rotations. The radial polynomial Rn for the
2D Zernike functions is defined so that the resulting basis RnSl is
orthonormal.

3.2.2 3D Zernike moments
Using the general construction rule derived above, we now derive

the 3D Zernike moments (see [7] for details).

Spherical harmonics. Motivated by the facts summarized in
the previous subsection and recalling that spherical harmonics on
the sphere have properties similar to the functions of Eqn. 1, we
continue with the description of spherical harmonics.

Spherical harmonics form a Fourier basis on a sphere much like
the familiar sines and cosines do on a line or a circle. Spherical
harmonics Y m

l are given by:

Y m
l (ϑ ,ϕ) = Nm

l Pm
l (cosϑ)eimϕ ,



where Nm
l is a normalization factor

Nm
l =

√
2l +1

4π
(l −m)!
(l +m)!

,

and Pm
l denotes the associated Legendre functions.

Invariance properties. The vector of spherical harmonics

Yl = (Y l
l ,Y l−1

l ,Y l−2
l , . . . ,Y−l

l )t (2)

for a given l forms the basis for a (2l + l)-dimensional subspace
which is invariant under the operations of the full rotation group1.
This can be formulated as

Yl(ϑ +ϑ0,ϕ +ϕ0) = ol(ϑ0,ϕ0)Yl(ϑ ,ϕ), (3)

where ol is a unitary matrix referred to as l-th representation of
the three dimensional rotation group SO(3). Furthermore, this sub-
space is irreducible that is, it cannot be split into smaller subspaces
which are also invariant under the rotation group. Since rotations
do not change the norm of functions, in consequence of Eqn. 3, af-
ter projecting a function f defined on the sphere onto the functions
of the vector Yl , we obtain invariant features µl of f by computing
the norms of the so computed vectors:

µl =

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

〈 f ,Y l
l (ϑ +ϑ0,ϕ +ϕ0)〉

〈 f ,Y l−1
l (ϑ +ϑ0,ϕ +ϕ0)〉

...
〈 f ,Y l−1

l (ϑ +ϑ0,ϕ +ϕ0)〉

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

〈 f ,Y l
l (ϑ ,ϕ)〉

〈 f ,Y l−1
l (ϑ ,ϕ)〉

...
〈 f ,Y l−1

l (ϑ ,ϕ)〉

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
(4)

As a next step, we have to augment this representation to cover the
three dimensional space.

Harmonic polynomials. Canterakis based his derivations on
harmonic polynomials which finally enabled him to formulate the
3D Zernike polynomials as homogenous polynomials in the Carte-
sian coordinates x, y and z.

Let us define the conversion between Cartesian and spherical
coordinates by x = |x|ξ = rξ = r(sinϑ sinϕ ,sinϑ cosϕ ,cosϕ)T .
The harmonic polynomials em

l are defined as

em
l (x) = rlY m

l (ϑ ,ϕ).

Using the integral formula for associated Legendre functions [10]
and converting into Cartesian coordinates, we can express the har-
monic polynomials as

em
l (x) = cm

l rl
(

ix−y
2

)m
zl−m

·∑� l−m
2 �

µ=0

(
l
µ

)(
l −µ
m+ µ

)(
− x2+y2

4z2

)µ
,

(5)

where cm
l are normalization factors:

cm
l = c−m

l =

√
(2l +1)(l +m)!(l −m)!

l!
.

The above formula yields homogenous polynomials for m > 0. For
m < 0 the following symmetry relation is used:

e−m
l (x) = (−1)mem

l (x), (6)

which yields homogenous polynomials in this case as well. It is
easy to see that an invariance relation similar to that of Eqn. 4
applies for the harmonic polynomial.

1A set {ψi} of vectors is said to span an invariant subspace Vs under
a given set of group operations {g j} if g jψi ∈Vs ∀i, j.

Derivation of 3D Zernike moments. The 3D Zernike func-
tions Zm

nl are defined as

Zm
nl(x) = Rnl(r) ·Y m

l (ϑ ,φ)

while restricting l so that l ≤ n and (n− l) be an even number. The
above equation can be rewritten in Cartesian coordinates using the
harmonic polynomials em

l :

Zm
nl(x) =

k

∑
ν=0

qν
kl |x|2ν em

l (x), (7)

where 2k = n− l and the coefficients qν
kl are determined to guaran-

tee the orthonormality of the functions within the unti sphere:

qν
kl = (−1)k

22k

√
2l+4k+3

3

(
2k
k

)
(−1)ν

·

(
k
ν

)(
2(k + l +ν)+1

2k

)
(

k + l +ν
k

) .

The orthonormality relation reads as follows:

3
4π

∫
|x|≤1

Zm
nl(x) ·Zm′

n′l′(x)dx = δnn′δll′δ mm′

In case of the 3D Zernike functions the same invariance relation
applies as in case of spherical harmonics. If we collect the functions
into (2l +1)-dimensional vectors Znl = (Zl

nl ,Z
l−1
nl ,Zl−2

nl , . . . ,Z−l
nl )t

for each l, for an arbitrary rotation P we obtain the relation

Znl(Px) = ol(P)Znl(x). (8)

We are now able to define the 3D Zernike moments Ωm
nl of an object

defined by f as

Ωm
nl :=

3
4π

∫
|x|≤1

f (x)Zm
nl(x)dx.

It is worthwhile noting that due to the symmetry relation of Eqn. 6,
a similar relation holds for the Zernike moments:

Ω−m
nl (x) = (−1)mΩm

nl(x). (9)

It is important to notice that the 3D Zernike moments Ωm
nl are not

invariant under rotations. In order to achieve invariance, we apply
the approach followed in case of spherical harmonics (cf. Eqn. 4):
we collect the moments into (2l + 1)-dimensional vectors Ωnl =
(Ωl

nl ,Ω
l−1
nl ,Ωl−2

nl , . . . ,Ω−l
nl )t and define the rotationally invariant 3D

Zernike descriptors Fnl as norms of vectors Ωnl :

Fnl := ||Ωnl ||. (10)

Reconstruction. Since the functions Zm
nl form a complete or-

thonormal system, it is possible to approximate the original func-
tion f by a finite number of 3D Zernike moments Ωm

nl :

f̂ (x) = ∑
n

∑
l

∑
m

Ωm
nl ·Zm

nl(x). (11)

Here, we sum over n ∈ [0,N], l ∈ [0,n] such that (n− l) be an even
number and m ∈ [−l, l]. We use the reconstruction to verify how
much of the original object information is included in a set of 3D
Zernike moments up to a given order n = N.



4. COMPUTATION OF 3D ZERNIKE DE-
SCRIPTORS

We now consider the computational details. First, let us expand
Zm

nl of Eqn. 7 using Eqn. 5:

Zm
nl(x) = cm

l 2−m ∑k
ν=0 qν

kl

·∑ν
α=0

(
ν
α

)
∑ν−α

β=0

(
ν −α

β

)
·∑m

u=0(−1)m−u
(

m
u

)
iu

·∑� l−m
2 �

µ=0 (−1)µ 2−2µ
(

l
µ

)(
l −µ
m+ µ

)
·∑µ

v=0

(
µ
v

)
·x2(v+α)+u

·y2(µ−v+β )+m−u

·z2(ν−α−β−µ)+l−m.

Substituting r = 2(v + α) + u, s = 2(µ − v + β ) + m− u and t =
ν −α −β −µ)+ l −m and setting

χrst
nlm = cm

l 2−m ∑k
ν=0 qν

kl

·∑ν
α=0

(
ν
α

)
∑ν−α

β=0

(
ν −α

β

)
·∑m

u=0(−1)m−u
(

m
u

)
iu

·∑� l−m
2 �

µ=0 (−1)µ 2−2µ
(

l
µ

)(
l −µ
m+ µ

)
·∑µ

v=0

(
µ
v

)
,

Zm
nl can be written in a more compact form as a linear combination

of monomials of order up to n

Zm
nl(x) = ∑

r+s+t≤n
χrst

nlm · xryszt (12)

Finally, let us observe that using Eqn. 12, the 3D Zernike moments
Ωm

nl of an object can be written as a linear combination of geomet-
rical moments of order up to n:

Ωm
nl =

3
4π ∑

r+s+t≤n
χrst

nlmMrst , (13)

where Mrst denotes the geometrical moment of the object scaled to
fit in the unit ball:

Mrst :=
∫

|x|≤1
f (x) xrysztdx, (14)

where x ∈ R
3 denotes the vector x = (x,y,z)t . An important fact

implied by Eqn. 13 is that in order to compute the 3D Zernike func-
tions we only have to compute the geometrical moments instead of
evaluating the complex exponential and associated Legendre func-
tion of spherical harmonics.

4.1 Algorithm
The above observations lead to the following algorithm to com-

pute the 3D Zernike descriptors Fm
nl . The computations have to be

conducted for all n, l,m index combinations for n ∈ [0,N], l ∈ [0,n]
such that (n− l) be an even number and m ∈ [−l, l].

The values χrst
nlm for r + s + t ≤ n have to be determined before

starting the algorithm. Note that this step is independent of a par-
ticular object and may be done offline. Since for an (n, l,m) triple,
there will typically be a lot of zero coefficients, we store the values

of these together with the indices r,s, t indexing the corresponding
geometrical moment in a list Listnlm

χ .
We now give the steps needed to compute the 3D Zernike mo-

ments and descriptors:

1. Normalization. Compute the center of gravity of the object,
transform it to the origin, and scale the object so that it will
be mapped into the unit ball.

2. Geometrical moments. Compute all geometrical moments
Mrst for each combination of indices, such that r,s, t ≥ 0 and
r + s+ t ≤ N. Refer to the next subsection for details on this
computation.

3. 3D Zernike moments. Compute all Zernike moments Ωm
nl

according to Eqn. 13. Note that the summation has to be
conducted only for the nonzero coefficients χrst

nlm stored in the
list Listnlm

χ . Also note that for m ≤ 0, Ωm
nl may be computed

using the symmetry relation of Eqn. 9.

4. 3D Zernike descriptors. Compute all Fnl according to Eqn. 10.

4.2 Geometrical moments
The computation of the geometrical moments is of central im-

portance with respect to the overall computational efficiency end
numerical accuracy of our method.

A typical approach to computing the geometrical moments of an
object represented by a 2D image or a 3D voxel grid is the follow-
ing:

1. Fix a coordinate system with origin at a corner of the grid
and axes aligned with the grid axes. Subsequently, sample
all monomials of order up to N at the grid point positions.

2. Compute the geometrical moments according to Eqn. 14 but
integrating over the whole voxel grid.

3. Transform the geometrical moments according to the nor-
malization transformation of the object. This can easily be
accomplished, since scaling can be achieved by scaling the
moments, the moments of the translated object can be repre-
sented in terms of a linear combination of original moments
of not greater order.

The first two steps introduce numerical problems. First, the sam-
pling at grid points implies that we treat the monomial as a function
having a constant value within a voxel, which is determined by the
value of the monomial e.g. in the center of the voxel. For rapidly
changing functions, like the monomials of high order, this results
in inaccuracy. Second, for a 643 grid for instance, the precision of
the double precision floating point number is exceeded already at
the order of 9. According to our experience, moments up to order
of 20 are needed to provide a good descriptor.

We treat the first issue by computing the geometrical moments
in terms of monomials integrated over the voxels. Since for high
orders the 3D Zernike descriptors seem to discard the values of vox-
els close to the origin, we normalize the object prior to computation
of moments, thus obtaining considerably better numerical accuracy
and providing a cure to the second problem. These procedures are
described in the remainder of this section.

4.2.1 Integration.
Let us first consider the 1D case. The function f is sampled at

the sample points {xi}, 0≤ i≤N−1. We treat f as having constant



values fi within intervals [xi,xi+1):

Mp =
∫

f (α)α p dα
= ∑N−1

i=0 fi
∫ xi+1

xi
α pdα

= ∑N−1
i=0 fi

xp+1
i+1 −xp+1

i
p+1 .

The computation of geometrical moments of order p for 0 ≤ p ≤ P
can be formulated in matrix form:


M0
M1
...

MP




︸ ︷︷ ︸
M

=




1
2
1
3
...
1

P+1







x0 x1 · · · xN

x2
0 x2

1 · · · x2
N

...
...

. . .
...

xP
0 xP

1 · · · xP
N




︸ ︷︷ ︸
X

·

·




−1
1 −1

1 · · ·
· · · −1

1




︸ ︷︷ ︸
D




f0
f1
...

fN−1




︸ ︷︷ ︸
F

We note that X is a Van der Monde with dimensions (P+1)×(N +
1), matrix D is of dimensions (N + 1)×N. During the computa-
tion, we first conduct the multiplication DF yielding a vector F′

0 of
differences:

F′
0 = DF =




f ′0,0
...

f ′0,N−1
f ′0,N


 =




− f0
f0 − f1

...
fN−2 − fN−1

fN−1


 .

Subsequently, we generate the vectors F′
i by successively multiply-

ing componentwise with the vector of samples S = [x0,x1, . . . ,xN ]T :

F′
n+1 =




f ′n+1,0
...

f ′n+1,N−1
f ′n+1,N


 =




x0 f ′n,0
...

xN−1 f ′n,N−1
xN f ′n,N




The 1D geometrical moments Mp can thus be computed by adding
up the components of F′

p and multiplying by a factor:

Mp =
1

p+1

N

∑
l=0

f ′p,l .

Since the 3D geometrical moments Mpqr can be written as:

Mpqr =
N−1

∑
i=0

xp+1
i+1 − xp+1

i

p+1
·

N−1

∑
j=0

yq+1
j+1 − yq+1

i

q+1
·

N−1

∑
k=0

zr+1
k+1 − zr+1

i

r +1
fi jk.

As the formula already suggests, the three dimensional case can
be split into 1D cases and may thus be computed in exactly same
manner as above.

4.2.2 Pre-scaling
The radial polynomials of the 3D Zernike function tend to have

small values near the origin. As a consequence, the projections of
the object function f in the vicinity of the origin are suppressed
– these values have very small impact on the final value of a 3D
Zernike moment Ωm

nl . On the other hand, scaling the object to fit
into the unit ball means that we shift the most severe numerical in-
accuracy caused by the floating point representation to the vicinity
of the origin, since high order monomials have values with high
negative exponent in this area.

Consequently, in order to obtain an improved numerical accu-
racy, as a first step we translate and scale the object according to
the normalization transformation discussed above, and compute the
geometrical moments afterwards. As is proven by our results in
Section 6, this considerably improves the numerical accuracy of
the final 3D Zernike descriptors.

5. RESULTS
In this section we describe some practical results of our approach.

In our experiments, the volumetric object functions were generated
by voxelizing the polygonal boundary representations of geometric
models. To this end we used the vxt software library [2]. We inves-
tigated a number of voxelization methods provided by this package;
in particular, voxelization with linear and gaussian decay function,
i.e. the values corresponding to voxels are determined as a linear or
gaussian function of the distance from the object surface. Further-
more, a binary function may be generated by simply thresholding
the values of the voxel grid. As subject of experiments, we used
a small set of 655 objects of general categories downloaded from
www.3dcafe.com. During our investigations we used the Euclidean
distance between vectors representing 3D Zernike descriptors as a
measure of similarity between the objects.

In the remainder of this section we demonstrate the numerical ac-
curacy of the algorithm and the reconstruction ability of 3D Zernike
moments based representation. Furthermore, we discuss the depen-
dency of the descriptor on the voxel grid resolution, voxelization
method and number of used invariants.

5.1 Numerical accuracy

747 BALL GUITAR INVCHAIR T-INVADER

Figure 1: The objects used to generate the results of Table 1.

In order to verify the numerical accuracy of our method, we used
the GNU MP arbitrary precision arithmetic library (http://www.
swox.com/gmp/) to generate an accurate reference. As already
mentioned in the Section 4.2, the accuracy of computations is de-
cisively influenced by the numerical stability of geometrical mo-
ments. We have implemented three versions of our software: with
pre-scaling, with integration and with both scaling and integration.
The results for the set of objects depicted in the Fig. 1 are pre-
sented in Table 1. We obtained these results by computing the
3D Zernike descriptors from Zernike moments of order n up to
20 and calculating the L2 norm of the difference between a vec-
tor of invariants yielded by the repective version and the precise
values computed using the GNU MP. In order to be able to assess
the values of Table 1 we note that we compute the similarity be-
tween two objects as the Euclidean distance of vectors containing
their respective 3D Zernike descriptors. These distances are typi-
cally on the order of 0.1, which implies that the inaccuracy caused
by incautious computation of geometrical moments render the ap-
proach unusable. Therefore, both the scaling and the integration
are important components of the numerical calculations.

We note that the computations using the GNU MP library were
about two orders of magnitude slower compared to those using the
built-in double precision arithmetic.



Figure 2: The classes of chairs and planes selected manually to inspect the retrieval performance of our algorithm.

Integrated Pre-scaled Integrated, Pre-scaled
GUITAR 484.5 22.7 0

T INVADER 85215.7 796.2 0
INVCHAIR 874.4 997.2 1.6e-17

747 2.6e5 56.7 1.3e-17
BALL 1.7e7 2289.7 3.7e-9

Table 1: The L2 error in dependence of the geometrical moment
calculation method.

5.2 Reconstruction
Figure 3 demonstrates the reconstruction property of the 3D Zernike

moments. We reconstructed the object using Eqn. 11 on a 243 grid.
As it can be seen, the moments of order up to 20 allow for re-
constructing the main object characteristics while discarding small
details.

5.3 Parameter dependency
In order to estimate the retrieval performance of the 3D Zernike

descriptors, we experimented with two classes of objects manually
selected from our small database: a class of 21 chairs and another
one consisting of 28 planes, see Figure 2. To measure the quality of
the query results we used the precision-recall diagrams commonly
used in information retrieval. These diagrams may be interpreted as
follows: Having a class C of objects and the top n matches delivered
by the retrieval system, the recall R indicates the number of already
found objects belonging to C, while the precision P(R) = R

n denotes
the ratio of this number to n. High precision values indicate good
results according to this measurement method. Since we intend to
investigate the retrieval quality with respect to several parameter
values, a single scalar would be of more use. To achieve this, we
average the precision values Pi of ith class members of C with 1 ≤

N=3 N=5 N=8

N=11 N=14 N=17 N=20

Original

Figure 3: Reconstruction of a spaceship shown as isosurfaces
of the reconstructed volumetric function. The upper left is the
voxelized original object. The numbers below the images indi-
cate the number of Zernike moments that have been used for
the reconstruction.

i ≤ |C| for a specific recall R j

P(R j) =
∑|C|

i=1 Pi(R j)
|C| ,

and simply sum up the precision over all recall values and normal-
ize the sum by the count of object belonging to each class, thereby
quantifying the overall precision PC

o of class C

PC
o =

∑|C|
j=1 P(R j)

|C| .

Hence, PC
o is essentially the integral of normalized precision-recall

diagrams averaged over the members of respective classes.
We analyze the influence of the following parameters:

• Voxelization method: we voxelized the polygonal boundary



Resolution Voxelization Kernel width N PChairs
o

2 10 0.31
323 Linear 4 9 0.29

5 8 0.02
2 14 0.41

483 Linear 4 12 0.34
6 12 0.3
2 18 0.44

643 Linear 4 15 0.43
6 15 0.38
1 20 0.45

643 Binary 2 20 0.48
3 21 0.4

Chairs

Resolution Voxelization Kernel width N PAirplanes
o

2 10 0.28
323 Linear 4 10 0.38

5 10 0.39
2 14 0.31

483 Linear 4 12 0.35
6 12 0.36
2 18 0.31

643 Linear 4 15 0.35
6 15 0.37
1 23 0.32

643 Binary 2 22 0.42
3 23 0.43

Airplanes

Table 2: The average retrieval precision results for chairs and
planes. Note that the highlighted best values are achieved for
similar parameter values in case of both classes.

of the objects using a radial linear- and binary kernel with
varying widths. We also experimented with gaussian ker-
nels with compact support, however, in this case the results
were very similar to those yielded by utilizing the linear ker-
nel. The support width of the kernel indicates the distance in
voxel units where the kernel values decrease to zero.

• Number N of moments: this indicates that Zernike moments
Ωm

nl with 0≤ n≤N were used to generate the invariants. Uti-
lizing low values of N we discard the high frequencies of the
objects, while for high values detail information is incorpo-
rated into the comparison as well.

• Resolution of the voxel grid: we used three resolutions:
323, 483 and 643. As is confirmed by our results, the coarser
and finer grids correspond to less or more detailed represen-
tations of objects, respectively.

Some results concerning the retrieval accuracy are summarized
in Table 2. Here, we did not include the results for all numbers
N of highest order moments, but only for those yielding the high-
est overall precision. The results for each class of objects may be
explained as follows:

• Airplanes: Kernels with large support (which essentially cor-
responds to thickening the boundary of the objects) yield a
representation that is apparently most characteristic to this
object class. The application of such kernels discards the
”disturbing” details, while emphasizing the indeed charac-
teristic structure of planes: a cylinder like bulk with wings
emanating symmetrically.

• Chairs: Although there are some common characteristics,
this class exhibits a greater manifoldness – we typically need
more details, i.e. high resolution, to describe these objects. It
is interesting to see in this example that in spite of the intu-
itional high-frequency nature of chairs (relatively thin legs,
thin planes of the lean and seat), the optimal number of mo-
ments is lower for this class compared to the planes. This
may be explained by the fact that addition of detail beyond a
specific bound makes the objects too different. Thus, on the
one hand we need a high grid resolution to preserve enough
detail in the volumetric representation. On the other though,
we need to discard some of these details in terms of high
order coefficients to maintain similarity.

It can be seen from Table 2 that the best results are achieved in
case of binary voxelization in a 643 grid. In what follows, we apply
a kernel width of 2 and maximal moment order N = 20.

While creating both of the above classes, we classified the ob-
jects according to shape and function. As it can be seen in Figure
2, though, we generated classes containing objects of considerable
variance in terms of shape. It should be emphasized that other clas-
sifications (e.g. including only dining room chairs, etc.) and/or
other databases of objects may and typically will yield other re-
trieval accuracies and other optimal parameter values. Moreover,
different descriptors may be more or less suitable for a particular
classification. We conjecture that it is possible to classify in such
a way that the precision values are considerably higher than in our
experiment. Furthermore, a particular classification may be more
or less appropriate for a given application. Our goal was to demon-
strate the performance of the 3D Zernike descriptors as a general
3D shape characterization, which guided our choice of example ob-
ject classes.

In order to test the influence of small geometric deformations
on the performance of the 3D Zernike descriptor, we gradually de-
formed a chair using the Free Form Deformation, see Figure 4. The
Euclidean distances from the original chair are indicated as ratio to
the distance of the best match given by our algorithm. As it can be
seen, the 3D Zernike descriptors are relatively insensitive to such
small geometric deformations, since the deformed versions would
still be the best matches.

0.3 0.51

Figure 4: Influence of small geometric deformation on the 3D
Zernike descriptors. The leftmost object is the original chair,
the other two were generated by deforming it. The values below
the deformed objects indicate the ratio of their distances to the
best match of the original object. Since the values are smaller
then 1, these objects still lie closer to the original one then the
best match yielded by the retrieval.

5.4 Comparison with spherical harmonic de-
scriptors

The spherical harmonic descriptors were introduced very recently
by Funkhouser et al. [13]. These descriptors essentially fit into



the model of rotationally invariant descriptor construction we pre-
sented in the Section 3, with the difference that the authors do not
use radial polynomials to modulate the spherical harmonics, but
sample the three dimensional space as concentric shells, where the
shells are defined by equal radial intervals. Subsequently, they dis-
cretize the shells into equiangular bins, and define a binary spheri-
cal function defined as 1 if there is an object point in such a bin and
0 otherwise. Consequently, their object representation consists of a
full spherical harmonic decomposition for each shell. The objects
are voxelized into a 643 grid after a normalization transformation
similar to that described in the previous section. The authors use
32 concentric shells to define the spherical functions and 16 rota-
tionally invariant spherical harmonic descriptors for each shell, this
gives a vector of 512 scalar values for a single object. During the
search of a database, the similarity of objects is calculated as the
Euclidean distance between these vectors.

Both 3D Zernike descriptors and spherical harmonic descriptors
achieve rotation invariance by exploiting the invariance properties
of the spherical harmonics. However, by merely sampling the space
in radial direction, the latter descriptor does not capture object ”fre-
quencies” or coherence in this direction, thereby incorporating less
object characteristic information. Finally, we note that using up
to 20 moments, the frequency resolution of the Zernike descrip-
tors will be similar to that of the spherical harmonic descriptors.
However, using the former we have 122 scalar values for an ob-
ject, which delivers a more compacte descriptor. In consequence,
the dimensionality of the search problem will be reduced, which
supports the effectiveness of the search process, and there is less
storage overhead for an object.

We present some experimental search results in Fig. 5. The ob-
jects in the database have been voxelized and for each object a 3D
Zernike descriptor was computed based on moments of order up to
20 which resulted in 122 scalar values for each object. The compu-
tation of such descriptors for a grid of 643 lasted 0.3 seconds each
on a 1.8 GHz Pentium4. As for spherical harmonic descriptors, we
used the setting suggested in [13], i.e. 32 concentric spheres and
16 coefficients for each sphere. The query object is the first one in
each row, the left to right ordering reflects the similarity ordering
yielded by the retrieval process. Beneath each result given by our
approach, the result delivered using spherical harmonic descriptors
are presented for reference. Although there are differences, the
descriptors deliver similar retrieval performance. To compare the
performance of both methods we present average precision-recall
diagrams for pre-classified sets of chairs and planes, see Figure 6.
The results are very similar for the class of planes, whereas for
chairs the 3D Zernike descriptors apparently perform considerably
better. We once again emphasize though, that we use optimized
parameters as described in the previous subsection. We did not ex-
periment with the spherical harmonic descriptors in such terms, we
merely used the setting suggested by the authors.

Similarly to the spherical harmonic descriptors, the representa-
tion as 3D Zernike descriptors is insensitive to geometric and topo-
logical artifacts common to freely available objects. This implies
that despite of its compactness, the 3D Zernike descriptors can suc-
cessfully compete with the retrieval performance of spherical har-
monic descriptors.

We note that in case of a large database of 3D objects, the un-
derlying frequency metaphor may be used to accelerate the search
process. We recall that the spherical harmonics form essentially
a Fourier basis on the sphere and the radial polynomial may also
be interpreted analogously in terms of their order. This allows us
to generate a natural hierarchy of representations and enables the
utilization of an efficient hierarchical search algorithm.

1a

1b

2a

2b

Figure 5: Excerpt of the search results. The leftmost object is
the query in each row, the ordering from left to right reflects
the similarity ordering. Beneath the results provided by our
method (denoted by ’a’) the results yielded by spherical har-
monic descriptors (denoted by ’b’) are shown for reference.

6. CONCLUSIONS AND FUTURE WORK
In this paper we utilized the 3D Zernike descriptor for the pur-

pose of content based retrieval of 3D objects. We discussed some
general rules for the construction of affine invariant object descrip-
tors and derived the 3D Zernike descriptors within this framework.
We furthermore considered the implementational issues: the severe
instability of geometrical moments and hence the 3D Zernike de-
scriptors in case of high orders. As a cure to this problem, we
applied analytical integration within each voxel and scaled the ob-
ject prior to computations, thereby achieving high accuracy even
for high orders of Zernike moments. The quality of the descriptor
regarding the retrieval performance was analyzed and verified also
with respect to another related recent technique. As it turns out,
the 3D Zernike descriptors compare favorably to the best descrip-
tors for general 3D objects in terms of retrieval performance and
robustness against topological and geometrical artifacts plaguing a
most of freely available models.

As for short term future work we plan to investigate the usage
of further radial functions: a wavelet based function seems to be
promising, as such basis would allow for a multi-resolution radial
localization of frequenciese. Moreover, we intend to elaborate a
new distance function between the descriptors, as we suspect that
different coefficients contribute to different a extent to the overall
shape information.
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Figure 6: Precision-recall diagrams corresponding to the a)
class of planes and b) class of chairs.
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