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Abstract
Image-based representations of an object profit from known geometry. The more accurate this geometry is known,
the better corresponding pixels in the different images canbe aligned, which leads to less artifacts and better
compression performance. For opaque objects the per-pixeldata can then be interpreted as a sampling of the
BRDF at the respective surface point. In order to parameterize this sampled data a coordinate frame has to be
defined. In previous work this coordinate frame was either the global frame or a local frame derived from the
base geometry. Both approaches lead to misalignments between sample vectors: Features of basically very similar
BRDFs will be shifted to different regions in the sample vector leading to poor compression performance. In
order to improve alignment between the sampled BRDFs in image-based rendering, we propose an optimization
algorithm which determines consistent coordinate frames for every sample point on the object surface. This way we
efficiently align the features even of anisotropic reflection functions and reconstruct approximate local coordinate
frames without performing an explicit 3D-reconstruction.The optimization is calculated efficiently by exploiting
the Fourier-shift theorem for spherical harmonics. In order to deal with different materials in a scene, the technique
is combined with a clustering algorithm. We demonstrate theutility of our method by applying it to BTFs and 6D
surface reflectance fields.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Picture/Image Generation]: Digitizing and
scanning I.3.7 [Three-Dimensional Graphics and Realism]:Color, shading, shadowing, and texture

1. Introduction

Due to the advent of sophisticated acquisition devices and
compression algorithms data-driven techniques became in-
creasingly popular in the computer graphics community dur-
ing the last decade. For example the digitization of the 3D
object shape using laser scanning or other 3D-acquisition
techniques is currently a major part of the 3D production
pipeline. Of particular interest are image-based rendering
(IBR) methods which offer photorealistic renderings of a
complex object under arbitrary illumination based on differ-
ently illuminated photographs of that object. The idea is to
represent the complex appearance of an object by sampling
the plenoptic function [AB91] under varying lighting condi-
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tions [DHT∗00] instead of modeling the appearance which
can be a complex and sometimes even impossible task.

A key issue in IBR is the parametrization of the plenoptic
function, i.e., the parametrization of rays of light definedby
position and direction in space, which is needed to interpo-
late novel views from the samples. From the early stages of
IBR it has been known that the effectiveness of image-based
representations concerning acquisition effort, compression
performance and rendering quality is strongly related to the
chosen parametrization.

Typically a parametrization is induced by a base geometry
which encloses the captured object. The rays are then param-
eterized by a point on the base surface and the camera po-
sition. Using this parametrization the accuracy of the avail-
able base geometry effects the number of images needed to
obtain an anti-aliased rendering [CCST00] and thus the pos-
sible achievable compression rates for the measured data. In
the special case where the base geometry coincides with the
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Figure 1: Small deviations of the base geometryS from the
real surface O (upper right) lead to misalignments in the an-
gular dimension: The actual BRDF slice for fixed lighting
directionωl is rotated and might change its shape, e.g., be-
cause the Fresnel effect causes an increased specular peak
for grazing angles (left). If the data is put into the common
coordinate system derived from the base surfaceS the data
at the pointsx, x′ andx′′ differ even if the underlying BRDF
is the same (center right).

exact geometry and the reflection is Lambertian, one texture
image suffices to reconstruct the appearance of the object
during rendering. Keeping the base geometry exact but al-
lowing for uniform non-Lambertian reflection, novel views
under varying light directions can only be generated from
the geometry and a single BRDF if a local coordinate system
parameterizing this BRDF is defined in each surface point.
But to achieve this kind of compression in image-based ren-
dering the local coordinate system must be derived from the
measurements. For example for a material like brushed alu-
minium the tangent direction has to be defined in such a way
that the anisotropic reflection behavior caused by the brush-
ing is consistent from pixel to pixel, i.e., that the tangent
coincides with the orientation of the brushing. Of course, in
reality the normal is also not known, since that would require
an exact geometry reconstruction. In this case data misalign-
ments occur as illustrated in Figure1.

To improve upon this situation we propose a general and
efficient algorithm which estimates local coordinate systems
for every surface point in order to improve the alignment
of image-based data before compression. This strategy is il-
lustrated in Figure2. In particular this paper introduces the
following contributions:

• data-driven estimation of local coordinate systems – no
assumptions about the underlying reflectance data are
made, i.e., the method does not rely on a specific re-
flectance model

• for efficient computation the Fourier-shift theorem for
spherical harmonics is exploited – it enables extremely
fast computation of spherical correlations and might also
be of relevance for further applications like 3D texture re-
construction

Inspiration for this work came from the field of BRDF repa-
rameterization [Rus98]. These techniques have been suc-
cessfully applied to improve the compression of sampled
BRDFs for real-time BRDF rendering [KM99]. Our work
can be interpreted as a generalization of this approach to spa-
tially varying reflectance data.

The remainder of this paper is organized as follows. After
discussing previous work in Section2, we discuss the de-
tails of our technique in Sections3 and4. We demonstrate
the usefulness of our method by applying it to Bidirectional
Texture Functions (BTF) and general 6D surface reflectance
fields and show the results in Section5.

2. Previous work

2.1. Local coordinate systems in IBR

In most previous work local coordinate systems were simply
derived from the base geometry, which does neither capture
the normal variation due to fine scale surface height varia-
tions nor does it give any information about the orientation
of small-scale features causing anisotropic reflection.

The typical solution is to arrange the reflectance data in
spatially close blocks like in the work on surface light fields
of Chen et al. [CBCG02], where the reflectance data is con-
sidered per triangle. It is assumed that the local coordinate
systems are only gradually varying across the triangles, such
that one coordinate system is sufficient for the whole trian-
gle. Then the reflectance data of each triangle is compressed
independently. Consequently, the coherence between the re-
flectance data on different triangles is not exploited.

An approach more closely related to our method was in-
troduced by Wood et al. [WAA∗00]. They proposed to re-
flect the surface light field data around the normal in order
to increase the alignment of the reflective peak. Unfortu-
nately, this technique does not suffice in the case of general
reflectance data and the effectiveness of the method also de-
pends on the accuracy of the available normals.

Lensch et al. [LKG∗03] presented the first technique that
estimates per-point local coordinate systems in order to im-
prove fitting performance. In particular, they included the
estimation of per-point normals into their data-fitting pro-
cedure. Their fitting procedure assumes isotropic reflection
behavior and relies on an analytic reflectance model. In con-
trast, our general alignment method can be combined with
any kind of compression technique.

c© The Eurographics Association and Blackwell Publishing 2006.
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Figure 2: The principle behind our algorithm is the computation of consistent local frames (illustrated by the rgb-encoded
normal map in the top row). This is done by aligning the data along the angular dimension. In the shown example (plastic BTF
with knobs) the data is then compressed. As can be seen on the right the reconstruction using our technique is much sharper
(for equal compressed data size).

2.2. Compression for IBR

After alignment, the data is more amenable to compression
techniques. The most popular techniques for compression
in image-based rendering are Vertex Quantization (VQ) and
basis decomposition techniques like wavelets or Matrix Fac-
torization (MF) based on SVD or PCA. More recently Lo-
cal PCA, which can be thought of as a combination of VQ
and MF, and Tensor Factorization (TF) have become pop-
ular. Analytical reflectance models originally developed for
BRDF modeling (e.g., [War92] or [LFTG97]) have also been
used, but their known deficiencies restrict them to special
cases like dealing with sparse data [LKG∗03] or real-time
rendering [MLH02].

VQ is a very general tool and was already used in the sem-
inal paper of Levoy and Hanrahan about light field render-
ing [LH96]. Another prominent application is surface light
field rendering [WAA∗00]. The principle behind VQ is to
approximate similar datavectors by only one constant repre-
sentative using clustering. It is easy to implement but usually
leads to visible artifacts since it generates sharp transitions
between clusters and also destroys smooth transitions in the
data.

Basis decompositions like the Discrete Cosine Transform
(DCT) or Wavelet Transforms (WT) are well known from
image compression. A generalization of the WT to 4D light
field data was presented by Magnor et al. [MEG00]. Ho
et al. [HWL05] combined linear basis decomposition us-
ing PCA with DCT to compress the resulting coefficient
maps. MF in general is probably the most widely used com-
pression technique in IBR. It has also been applied to sur-
face light fields [WAA∗00, NSI99, CBCG02], reflectance
fields [MPN∗02] and BTFs [SSK03,LHZ∗04]. In these tech-
niques the data is projected onto a given basis which in the

case of MF is computed from the data itself. Such a basis
should represent the main features of the data well to achieve
good results. The artifacts introduced by basis decomposi-
tion techniques depend on the type of basis functions used
and range from smoothing (MF) to the well known block
artifacts (DCT, WT).

Combinations of VQ and MF like Local PCA have
found their way into computer graphics recently [SHHS03,
MMK03]. At the expense of higher fitting complexity these
techniques offer a much better reconstruction quality than
using VQ or MF alone, since artifacts of one technique
(smoothing, cluster borders) are compensated by the other.

While MF requires the image data to be arranged in a 2D
matrix, a more general arrangement would be a higher order
tensor. As demonstrated by several authors [FKIS02,VT04,
WWS∗05] this allows to exploit correlations, e.g., not only
between images but also between image rows and columns.
As a result, these techniques allow for higher compression
rates at the expense of higher reconstruction costs. Never-
theless, also these techniques profit from an improved align-
ment of the input data as the one we present in this paper.

3. Data representation

We formulate our algorithm for the general case of bidirec-
tional reflectance data where both view and lighting direc-
tion vary. Such data is typically captured using a setup as
sketched in Figure3. Surface light fields and image-based
relighting are popular special cases of this arrangement.

The general framework is the 8D reflectance field
RFS(xv,ωv,xl ,ωl ) [DHT∗00] which describes the appear-
ance of an object as seen under arbitrary viewing direc-
tions and illuminated by arbitrary lighting for fixed time

c© The Eurographics Association and Blackwell Publishing 2006.
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Figure 3: Our work is put in the context of this typical
image-based data acquisition setting: The object O is cap-
tured from a set of view positionsv ∈ V and lit from a set
of light positionsl ∈ L on the sphereΩ around the object.
The data is parameterized across the base surfaceS which
should enclose the object but is not required to coincide with
its surface. The data at a pointx on S is parameterized by
the directionsωl and ωv given in the local coordinate sys-
tem atx. Please note that in this setting the camera also
records interreflections and subsurface scattering, i.e.,light
that travels between different points on the surface (dotted
arrow).

and wavelength (and neglecting fluorescence and phospho-
rescence effects). Here,xv andxl are points on the parame-
terized surfaceS which is not required to coincide with but
should enclose the real object surface andωv, ωl are the di-
rections to the viewer and the light source given in the local
coordinate system atxv andxl respectively.

SinceRFS is an 8D entity and still beyond reach of current
acquisition systems and interactive rendering algorithms, we
describe now a common simplification to 6D. It is based on
omitting the spatial variation of the incoming light field. For-
mally this simplification can be interpreted as absence of in-
terreflections and subsurface scattering (no light travelsbe-
tween the pointsxv andxl ) or infinitely distant (directional)
lighting. Since both assumptions are clearly not valid in re-
ality we propose to formulate the projection down to 6D as
the following integral:

RF6D
S (x,ωv,ωl ) =

Z

S
RFS(x,ωv,xl ,ωl (xl ))dxl (1)

The term ωl (xl ) expresses the direction fromxl to
point light sourcel in the local coordinate system atxl .
RF6D

S (x,ωv,ωl ) now gives the light reflected from pointx
in directionωv while the object is illuminated by the point
light source "l". A measurement ofRF6D

S using a setting as

illustrated in Figure3 is now performed by taking images
from a setV of camera positions while lighting the scene
from a setL of light positions. Then such a measurement
can be tabulated in a large matrixD:

D =

{

{

RF6D
S (x,ωv(x),ωl (x))

}

v∈V, l∈L

}

x∈S̃
(2)

The columns ofD are indexed by surface positionsx (as-
suming the surfaceS has been discretized into some sort of
grid S̃) while the rows are indexed by view and light direc-
tion which allows the interpretation of the columns ofD as
sampled BRDFs. Figure4 shows a visualization ofD for a
synthetic data set where the rows and columns in the image
correspond the rows and columns ofD.

In practice, the set of view and light directions varies in
every column and the data might be inconsistent due to oc-
clusions and shadowing from the large scale geometry. For
the presentation of our algorithm in the following section
we assume that the data has been resampled into a common
setΩ̃+ of directions of the upper hemisphere using the local
coordinate systems derived from base geometrySand a stan-
dard resampling technique [CBCG02], and that inconsistent
data has been removed or completed.

4. Algorithm

In this section we present our algorithm for determination
of consistent local coordinate frames from image-based re-
flectance data sets. The main idea is to find a local orienta-
tion that maximizes the correlation between the reflectance
data of different surface points.

4.1. Aligning local frames for objects with uniform
material

In the IBR community per-point reflectance data (a col-
umn of D) is typically termed apparent BRDF (ABRDF)
[WHON97] because it has the formal structure of a BRDF
but also captures influence from the neighborhood like oc-
clusions and interreflections. We measure the quality of
alignment between two ABRDFsa andb by the following
correlation termCa,b:

Ca,b = ∑
ωv∈Ω̃+

∑
ωl∈Ω̃+

a(ωv,ωl )b(ωv,ωl )

If we assume thata andb are noisy measurements of the
same BRDF but with a misaligned local frame the likelihood
for the rotationR(Φ) = Rz(φ) ·Ry(θ) ·Rz(ψ) parameterized
by the zyz-Euler anglesΦ = (φ,θ,ψ) to align both frames is
given by

Ca,b(Φ) = ∑
ωv∈Ω̃+

∑
ωl∈Ω̃+

a(ωv,ωl )b(RT(Φ)ωv,RT(Φ)ωl ).(3)

Please note that this formulation requires the ABRDFs to
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be defined on the lower hemisphere as well. In our current
implementation we simply set values from the lower hemi-
sphere to zero. MaximizingCa,b(Φ) now corresponds to de-
termining the Euler angles̄Φ which maximize the correla-
tion betweena and the rotatedb:

Φ̄ = argmax
Φ

Ca,b(Φ) (4)

The alignment transformationR(Φ̄) then defines an approx-
imate local coordinate frame at the corresponding surface
position.

The question now arises how to align a set of ABRDFs
A = {ai}0<i≤N. If we again assume thatA is a set of noisy
misaligned instances of the same BRDF all we need is a tar-
get ABRDFc to which all other ABRDFs are registered. The
result will be a setR = {Ri} of alignment transformations.
Sincec is not known in the beginning we propose a simple
expectation-maximization procedure to findc andR simul-
taneously (Algorithm1).

Algorithm 1 Alignment of ABRDFsA = {ai}0<i≤N

return Set of alignment rotationsR = {Ri}

j = 0
c0 = ai i ∈ {1..N} {choosec0 from A randomly}
repeat

for i = 1 toN do
Φi = argmaxΦ Cai ,c j (Φ)
Ri = R(Φi)

end for
c j+1(ωv,ωl ) = 1

N ∑N
i=1 ai(RT

i ωv,RT
i ωl )

j = j +1
until ε < τ { ε is the increase in accumulated correlation
∑N

i=1Cai ,c j (Φi) between two iterations}

The method is inspired by curve alignment techniques
where the alignment curve is computed as the mean of the
curves to be aligned.

4.2. Making it fast

The most interesting and costly statement of Algorithm1
is the maximization step (Equation (4)). Simply calculating
the correlation for a dense set of grid points in the space of
the rotation groupSO(3) and returning the point with max-
imum correlation will be horribly slow. E.g., if we assume
a desired accuracy of one degree in all three dimensions we
actually have to calculate the correlation for 360×90×360
rotations which is infeasible. Please note also that the ro-
tated directions usually will not be in the setΩ̃+ of sampled
directions necessitating a costly resampling. Therefore,the
general strategy will be to evaluate the correlation only ata
sparse grid of rotations and to use the location of the found
maximum as initialization for a non-linear optimization step.
Of course we then could end up in local minima, but even a
non optimal alignment will be better than no alignment.

4.2.1. Spherical correlation

In order to speed up the computation of Equation (3) itself
we apply techniques from Fourier theory over the sphere. It
is convenient for the derivation of this optimization to formu-
late the correlation term for 2D reflection functions and for
the continuous domain of the unit sphereS2. A generaliza-
tion to 4D ABRDFs will be given afterwards. The modified
correlation term reads as follows:

CS2

a,b(Φ) =

Z

ω∈S2
a(ω)b(RT(Φ)ω) dω (5)

This integral has the form of a spherical convolution
such that the generalized Fourier shift theorem is applica-
ble [KR03]. Indeed, we can decompose bandlimiteda and
b with maximum bandwidthL into the Spherical Harmonics
(SH) basis:

a(ω) =
L

∑
l=0

∑
|m|≤l

âl
mYl

m(ω)

b(ω) =
L

∑
l=0

∑
|m|≤l

b̂l
mYl

m(ω).

The generalized Fourier shift theorem now stems from the
fact that a rotated SH-basis function can be written as a linear
combination of SH-basis functions of the same band:

Yl
m(RT(Φ)ω) = ∑

|k|≤l

Dl
km(Φ)Yl

k(ω) (6)

HereDl
km(Φ) denotes a Wigner-D function. From (6) fol-

lows

b(RT(Φ)ω) =
L

∑
l=0

∑
|k|≤l

(

∑
|m|≤l

b̂l
mDl

km(Φ)

)

Yl
k(ω) (7)

which by exploiting the orthogonality of the SH basis imme-
diately leads to

CS2

a,b(Φ) =
L

∑
l=0

∑
|k|≤l

∑
|m|≤l

âl
kb̂l

mDl
km(Φ) (8)

Since the right hand side of Equation (8) has the form of

the Fourier decomposition ofCS2

a,b(Φ) in the rotation group
SO(3) the generalized Fourier shift theorem follows imme-
diately by comparing coefficients:

ĉl
mn = âl

mb̂l
n (9)

which now (analogue to convolutions in the planar domain)

allows to compute the Fourier coefficients ˆcl
mn of CS2

a,b(Φ)
by multiplying the Fourier coefficients ofa(ω) andb(ω) (in
fact, an outer product has to be computed per band).

The direct evaluation of Equation (8) has complexity
O(L3). But fortunately, there exists an (inverse) Fast Fourier
Transform (FFT) [KR03] which evaluates Equation (8) for
a grid of (2L + 1)3 rotations with complexityO(L3 log2 L)
compared toO(L6) for the direct evaluation.

c© The Eurographics Association and Blackwell Publishing 2006.



G. Müller, R. Sarlette & R. Klein / Data-driven Local Coordinate Systems for Image-Based Rendering

L Eqn. (5) |Ω̃+| = 151 Eqn. (8) direct Eqn. (8) FFT
4 0.325 0.685 0.029
8 1.873 27.673 0.336
16 15.144 >1000 5.326

Table 1: Average computation times (in milliseconds) for
spherical correlation on an O(L3) grid for varying L on an
AMD Athlon 3200+.

We implemented both the direct evaluation of Equation
(8) and its efficient evaluation by applying inverse FFT us-
ing the freely available C-library SOFT [SOF]. Furthermore,
we implemented the "brute-force" evaluation of Equation (5)
using numerical integration. Table1 shows timing results for
different values ofL.

4.2.2. Generalization to 4D

To generalize the results from the previous section to the
ABRDF correlation in Equation (3) we follow a tensor prod-
uct approach, i.e., we represent an ABRDF in the tensor
product basis of Spherical Harmonics:

a(ωv,ωl ) =
L

∑
l1,l2

∑
m1,m2

âl1l2
m1m2Y

l2
m2(ωv)Y

l1
m1(ωl )

Repeating the steps from the previous section (we omit them
here for brevity) leads to the following lengthy sum

CS2×S2

a,b (Φ) =
L

∑
l1l2

∑
m1m′

1

∑
m2m′

2

âl1l2
m1m2

b̂l1l2
m′

1m′

2
Dl2

m2m′

2
(Φ)Dl1

m1m′

1
(Φ) (10)

After a simple reordering of terms the direct evaluation of
this sum has complexityO(L5) which would leave us with
an expensiveO(L8) algorithm. Applying the inverse FFT
in a tensor product fashion will result in a still expensive
O(L6log2L) algorithm and returns the correlation for arbi-
trary combinations of rotations(Φ1,Φ2) ∈ SO(3)×SO(3)
while we require only those elements whereΦ1 = Φ2. We
currently have not found a way to exploit this.

Another problem of the tensor product representation is
the memory requirement. ForL = 8 each ABRDF consists
of 4096 SH coefficients which easily sums up to hundreds
of megabytes of data for typical datasets. Therefore, we pro-
pose to factorize the ABRDFsa,b into a sum of products of
2D functions which reduces both the memory requirements
and computational complexity. Specifically, we find repre-
sentations of the form

a(ωv,ωl ) ≈
K

∑
i

a1,i(ωv)a2,i(ωl )

b(ωv,ωl ) ≈
K

∑
i

b1,i(ωv)b2,i(ωl )

using for example SVD. Substituting these representations

L Eqn. (3) Eqn. (10) Eqn. (11) K=4 K=6
4 291.2 26.86 1.145 2.591
8 >1500 >3500 10.683 23.803
16 N.N. N.N. 195.937 445.118

Table 2: Average computation times (in milliseconds) for
correlation of ABRDFs on an O(L3) grid for varying L on
an AMD Athlon 3200+. Direct approaches are not feasible
for L > 4.

for a andb leads to a modified correlation term

C̃S2×S2

a,b (Φ) =
K

∑
i

K

∑
j

CS2

a1,i ,b1, j
(Φ)CS2

a2,i ,b2, j
(Φ) (11)

which reduces the 4D correlation to a sum of products of 2D
correlations. Using again the inverse FFT for spherical cor-
relations we now have anO(K2L3 log2L) algorithm. In our
experiments we set 4≤ K ≤ 8 but typically 4 components
suffice without degrading the results (see Figure7), since
the main features relevant for the alignment are captured in
this representation.

As in the 2D case we implemented the direct evaluation of
Equation (10) and simple numerical integration for compar-
ison. The huge performance benefits gained from Equation
(11) are illustrated in Table2. Using the settingsL = 8 and
K = 4 we align about one hundred ABRDFs per second for a
sufficiently dense grid of rotations. This adds up to computa-
tion times of about one hour for the alignment of a complete
dataset of 2562 ABRDFs using four iterations of Algorithm
1 and including the preprocessing time required for factor-
ization and SH projection.

4.3. Aligning ABRDFs for objects with different
materials

Most objects are made of different materials which may vary
across the surface. Applying the approach from Section4.1
will then align ABRDFs which have been measured from
probably very different BRDFs which may lead to at least
sub-optimal results. Our solution is to apply a k-means clus-
tering algorithm with an orientation invariant distance met-
ric. The metric is based on a normalized version of the cor-
relation term (3):

d(a,b) = 1−max
Φ

C̄a,b(Φ) (12)

d(a,b) defines a so-called semi-metric (triangle inequality
does not hold) and we use it as an orientation invariant dis-
tance metric for the k-means clustering. By using this metric
an ABRDF will be assigned to the cluster where the cor-
relation between the cluster center and the suitable rotated
ABRDF is maximized.

c© The Eurographics Association and Blackwell Publishing 2006.
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Figure 4: The original data matrixDorig is turned into an
aligned data matrixDaligned by our algorithm. The images on
the right are zoom-ins and show how well the features are
aligned along the angular dimension: the diagonal features
have been turned into almost perfect horizontal features.

5. Results

To test our algorithm we applied it to three kinds of data
sets: synthetically generated data, measured BTF data and
measured 6D surface reflectance fields. The measured data
sets consist of 22801 images captured from 151 different
view directions and 151 lighting directions. They were mea-
sured with a multi-camera dome developed at the university
of Bonn [MBK05]. The storage requirement of such uncom-
pressed bidirectional datasets in high-dynamic range easily
exceed tens of gigabytes.

To evaluate the improvement in compression performance
achieved by the method we applied SVD to the datasets be-
fore and after alignment. We used online SVD [Bra03] to
decompose the data matrices since their size easily exceeds
the maximum size of a single memory block.

5.1. Synthetic Data

To begin the tests of our algorithm in a controlled environ-
ment we generated a synthetic BTF by generating a map
of local coordinate frames using a normal map (124× 90
pixels) calculated from the Eurographics logo and a cosine
modulated tangent map. We then generated an anisotropic
BRDF using the Ashikhmin-Shirley BRDF model [AS00]
and rotated it for every tangent frame given in the map. We
sampled this synthetic BTF at 81× 81 = 6561 directions
and applied the alignment algorithm described in the pre-
vious section. Using three iterations and the settingsL = 8

Figure 5: The decay of singular values for the decomposi-
tion of Dorig andDaligned respectively.

Figure 6: Left: original normal map (RGB encoded) used
to generate the synthetic BTF. Right: normal map resulting
from our alignment algorithm.

andK = 5 the alignment took about five minutes. Figures
4-6 show the results. Note how well the angular features of
the ABRDFs are aligned and the dramatic variance reduction
that follows from that alignment. Without alignment 20 com-
ponents are needed to achieve the same variance reduction as
achieved with 2 components for the aligned data. Note also
the high quality of the recovered normal map which sug-
gests that our algorithm might be useful for small-scale 3D-
reconstruction from reflectance measurements.

5.2. Bidirectional texture functions

BTFs can be understood as 6D surface reflectance fields with
planar base geometry. Therefore, no special care has to be
taken to handle large scale occlusions or shadows and the
local coordinate system is usually defined by the plane of
the sample holder and the up direction of the texture. Never-
theless, in many cases it is worthwhile to derive per-pixel co-
ordinate systems as can be seen for the two car interior ma-
terials shown in Figure8. The variance reduction achieved
for theplastic knobsmaterial is shown in Figure7. From our
experience the alignment technique is most useful for BTFs
when extreme compression rates are required like, for exam-
ple, in real-time rendering. In this case the fitted local coor-
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2 SVD components, 200 KB aligned, 2 SVD components, 200 KB uncompressed 900 MB

12 SVD components, 1 MB aligned, 12 SVD components, 1 MB uncompressed 900 MB

Figure 8: Extreme compression of theplastic knobsand grey textileBTF datasets. The structure is drastically smoothed or
even disappears (see bottom left image, upper part of torus)for SVD-only compression. After alignment much more structure is
preserved.

dinate systems already capture much of the material’s struc-
ture, so that the remaining available memory can be used
to reconstruct the correct shape of the BRDF. It has to be
mentioned that the additional rendering costs introduced by
using per-pixel local coordinate systems are negligible.

5.3. 6D surface reflectance fields

In the case of general 6D reflectance fields the problem of
inconsistent coordinate systems is even more pressing than
for BTFs. While BTFs are usually textures with small scale
variations which are repeated across the sample, a general
3D object typically contains much more variance in surface
appearance. Furthermore, additional variance is introduced
by large scale occlusions and shadows. As in [CHLG05] we
applied online SVD with missing values [Bra03] to recon-
struct the missing data.

The geometry of the captured object was reconstructed
using a visual hull approach. Then the resulting geometry
was parameterized using the Maya texturing tool and the im-
ages where projected onto this geometry and resampled into

the texture domain. The resulting Lempel-Ziv compressed
dataset has a size of 2 GB. After applying our alignment al-
gorithm with 16 clusters we compressed the data using Local
PCA with 16 clusters and 10 components per cluster, which
resulted in a datasize of 22 MB. Figure9 shows the normal
map computed by our algorithm and compares the rendering
from the compressed to a rendering generated from the un-
compressed data. Apart from a small color degradation and
some artifacts at the handle the difference is hardly notice-
able.

Figure10 shows a few examples of the photorealism that
can be achieved by combining 6D reflectance fields with
image-based lighting. The overall data size used to generate
the images in Figure10 was 34 MB.

6. Conclusions

In this paper we proposed an algorithm which estimates
data-driven local coordinate systems for image-based ren-
dering. These local coordinate systems were chosen as the
orientation which maximizes the correlation between the ap-
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Figure 9: The precious vase data set. Left: the normal map computed by our algorithm. Middle: rendering from compressed
representation (Local PCA - 22 MB). Right: rendering from losslessly compressed data (Lempel-Ziv - 2 GB)

Figure 10: The precious vase dataset and a textile BTF combined with image-based lighting: Arbitrary viewpoints under
arbitrary lighting with photo-realistic appearance.

parent BRDFs of an image-based data set. To compute this
maximization efficiently we evaluated the correlation term
in Fourier space by expanding the ABRDFs in the Spheri-
cal Harmonics basis. We then applied a fast inverse Fourier
transformation for functions defined on the rotation group,
SO(3). As shown by several examples, the data alignment
achieved by our algorithm leads to significant variance re-
duction in the data which improves the compression perfor-
mance for BTFs and 6D surface reflectance field.

For future work we plan to use our algorithm to enable
high-quality real-time rendering of complex 6D surface re-
flectance fields. We will investigate if the method can be
used for the faithful 3D reconstruction of textures. In that
context it will be also interesting to compare and even com-
bine our approach with 3D reconstruction techniques for
small scale geometry like that of Wang et al. [WTS∗05].
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