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Abstract. Clinical decision support systems (CDSSs) have gained crit-
ical importance in clinical practice and research. Machine learning (ML)
and deep learning methods are widely applied in CDSSs to provide diag-
nostic and prognostic assistance in oncological studies. Taking prostate
cancer (PCa) as an example, true segmentation of pathological uptake
and prediction of treatment outcome taking advantage of radiomics fea-
tures extracted from prostate-specific membrane antigen-positron emis-
sion tomography/computed tomography (PSMA-PET/CT) were the main
objectives of this study. Thus, we aimed at providing an automated clini-
cal decision support tool to assist physicians. To this end, a multi-channel
deep neural network inspired by U-Net architecture is trained and fit to
automatically segment pathological uptake in multimodal whole-body
baseline 68Ga-PSMA-PET/CT scans. Moreover, state-of-the-art ML meth-
ods are applied to radiomics features extracted from the predicted U-Net
masks to identify responders to 177Lu-PSMA treatment. To investigate
the performance of the methods, 2067 pathological hotspots annotated
in a retrospective cohort of 100 PCa patients are applied after subdivid-
ing to train and test cohorts. For the automated segmentation task, we
achieved 0.88 test precision, 0.77 recall, and 0.82 Dice. For predicting
responders, we achieved 0.73 area under the curve (AUC), 0.81 sensitiv-
ity, and 0.58 specificity on the test cohort. As a result, the facilitated
automated decision support tool has shown its potential to serve as an
assistant for patient screening for 177Lu-PSMA therapy.
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Learning · Multimodal Imaging · Positron Emission Tomography · Com-
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1 Introduction

Computer-aided diagnosis (CAD) has been used extensively to assist physicians
and researchers in a variety of fields including oncology. Prostate cancer endan-
gers men’s health as the fifth cancer disease to cause mortality in the world [1].
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To assess the disease stage as well as to monitor the treatment progress, PET/CT
scans are commonly used. PET/CTs are multimodal medical imaging techniques
which are widely used for different cancer diseases [2–4, 12]. On the one hand,
PET scans outline differences in functional activities of different tissues. On the
other hand, CT scans provide high-resolution spatial and anatomical informa-
tion of the tissues. Thus together, PET and CT provide both functional and
anatomical information to locate malignancies.

Fig. 1. An example of multimodal imaging for prostate cancer management. Left: the
positron emission tomography (PET), right: the overlaid PET/computed tomography
(PET/CT). The red uptake in the right panel includes both pathological and physio-
logical uptake.

In clinical routine, nuclear medicine (NM) physicians often spend an enor-
mous amount of time to analyze medical imaging modalities to locate cancerous
tissues and to stage the disease. Moreover, considering the treatment expenses,
avoiding unnecessary treatment would be of critical importance. Thus, on the
one hand, clinical decision support tools can reduce the time and effort required
by the domain experts, and on the other hand, they could help with identifying
the patients who might not benefit from the therapy in a timely manner.

In order to make diagnostic and prognostic decisions based on PET/CT
scans, several issues need to be taken care of. First of all, PET and CT scans,
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even when taken with the same scanner, are produced in different resolutions and
often in different coordination systems. Second of all, as a non-invasive diagnostic
method, true segmentation of pathological (i. e., malignant) uptake is of critical
importance. Last but not least, the required time and effort to conduct deci-
sive actions need to be minimized. To tackle the first challenge, co-registration
and resampling of the two modalities and bringing them to the same coordi-
nate system have to be conducted. Furthermore, for the segmentation of the
malignant tissues, appropriate labeling and annotation tools should be applied.
Finally, to optimize the whole diagnostic procedure in terms of time and effort,
(semi-) automated assistant tools need to be provided. The main contribution
of our methods is to provide such an automated tool which facilitates both the
automated segmentation of pathological uptake as well as the identification of
non-responders to therapy.

Fig. 2. The high-level outline of the tools. The segmentation and annotation module
consists of in-house developed and third party software for automatic and manual
segmentation and labeling of the input scans. The radiomics unit utilizes radiomics
feature calculation and selection. The analyses module encapsulates the tools used for
the visualization of study results (*: the original U-Net architecture as proposed by
Ronneberger et al. [8]).

In general, given PET 3D scans, cancerous and metastatic tissues usually fea-
ture higher metabolic uptake than benign or normal tissues. However, challenges
arise as some organs such as liver and kidneys also associate with high uptake
which is considered as not pathological (i. e., physiological). Thus, discriminat-
ing pathological uptake becomes more challenging for inexperienced annotators.
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To cope with this issue, often CT scans complement PET scans as an additional
channel to better locate the sites with pathological uptake. Figure 1 illustrates
an example of multimodal PET/CT scans, denoting the similarities between
pathological and physiological uptakes.

As conventional segmentation methods, thresholding based algorithms are
applied to PET scans, leveraging fixed and adaptive thresholds such as 40% of
maximum standardized uptake values (40%-SUVMAX). However, inconsistencies
in scanning resolutions and protocols from scanner to scanner and from center to
center expose limitations to thresholding based approaches. To address this issue,
automated segmentation leveraging deep neural networks have been beneficial
in many diagnostics fields such as oncology [5], drusen segmentation [6] and
computational neuroscience [7]. Since first time proposed by Ronneberger et al.
[8], U-Net based architectures have been widely applied in medical domain for
different segmentation tasks [9, 10]. Liu et al. [11] have conducted a survey on
U-shaped networks used for medical image segmentation.

As the next consecutive step towards diagnosis and therapy response pre-
diction, deep and supervised ML methods are commonly used in combination
with radiomics analyses in clinical research [12–14]. The term radiomics denotes
the procedure of extracting numerical quantities out of medical imaging data in
terms of two or three dimensional (2D or 3D) intensity, shape, or texture based
features which characterize tumors and other hotspots.

In this manuscript, we introduce a clinical decision support tool consisting of
an automated segmentation unit inspired by U-Net architecture and supervised
ML classifiers to distinguish responders and non-responders to 177Lu-PSMA as
a routine therapy procedure to treat patients diagnosed with prostate cancer.
The presented automated tools facilitate the management of PCa patients based
on baseline 68Ga-PSMA-PET/CT scans. To end up with the ultimate decision
support solution, several steps are taken: 1) preprocess and resample PET and
CT input Dicom [15] images, 2) annotate the input images to provide ground
truth (GT) labels for ML and deep learning pipelines, 3) automatically segment
the pathological uptake using deep neural networks (NNs) and extract radiomics
features based on the predicted masks, 4) utilize supervised ML classifiers to
predict the responders to therapy based on the radiomics features extracted
from the PET/CT findings.

For this study, a cohort of 100 PCa patients have been retrospectively an-
alyzed and subdivided to training and test cohorts as detailed in Section 2.2.
The training cohort is used for training and fitting the automated segmentation
pipeline and for training and hyperparameter tuning of the supervised ML clas-
sifiers as used for therapy response prediction. We took advantage of TensorFlow
[16] and Keras [17] libraries to customize our U-Net based segmentation model
based on multimodal PET and CT channels to predict masks based on manually
annotated GT masks using third party software. Dice coefficient [18] is applied
to quantify the amount of agreement between the predicted masks and the given
GT masks. As a result, the superiority of combination of PET and CT channels
compared to masks predicted using only PET channel is shown. In the next step,
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PyRadiomics library [19] is used to calculate the radiomics features for PET and
CT modalities based on the pathological uptake predicted by the implemented
PET-CT-U-Net. In the final step, ML classifiers are applied to the calculated
radiomics features to predict responders to therapy. This step includes recursive
feature elimination (RFE) technique [20] to identify the most relevant features
for the classification problem.

To the best of our knowledge, so far, no other automated clinical decision
support tool based on deep learning methods is presented for the management
of prostate cancer patients using baseline 68Ga-PSMA-PET/CT findings.

2 Methods

2.1 Pipeline Overview

The study pipeline consists of several modules including multimodal PET/CT
resampling and visualization tool box, U-Net based segmentation, radiomics fea-
ture extraction and selection, and prognosis which together serve as a clinical
decision support system (CDSS) for the management of PCa patients. Figure 2
gives a high-level outline of the tools. The whole pipeline is represented as three
consecutive building blocks: 1) segmentation and annotation, 2) radiomics, and
3) analyses.

The segmentation and annotation block consists of various assets facilitating
manual and automated segmentation and annotation of multimodal PET/CT
images. For instance, InterView FUSION [21] is used for the manual delineation
of hotspots while an in-house developed deep segmentation network based on U-
Net [8] is used for automated segmentation of pathological uptake. The radiomics
block consists of feature extraction and selection tools. Finally, the analyses block
covers the tools and diagrams aiming at representing the end-user level analyses
and insights.

Table 1. The summary of the clinical information of the patients cohort (PSA: prostate
specific antigen).

Age [years] Gleason Score PSA [ng/ml]

Minimum 48 6 0.25

Maximum 87 10 5910

Average 70.40 8.32 461.57

2.2 Dataset and Ground Truth Annotation

For this study, a cohort of 100 patients (67 responders vs 33 non-responders) who
had been diagnosed with advanced prostate carcinoma and had been selected
for 177Lu-PSMA therapy has been analyzed retrospectively. The patients’ ages
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ranged from 48 to 87 years. Table 1 gives an overview of the clinical information
of the cohort. A Biograph 2 PET/CT system (Siemens Medical Solutions, Er-
langen, Germany) was used for image acquisition and reconstruction. A random
subset of 61 subjects (40 responders vs 21 non-responders) is used for training,
while the rest of the patients (39 patients including 27 responders and 12 non-
responders) have served as test cohort. All patients gave written and informed
consent to the imaging procedure and for anonymized evaluation of their data.
Due to the retrospective character of the data analysis, an ethical statement was
waived by the institutional review board according to the professional regula-
tions of the medical board of the state of North-Rhine Westphalia, Germany.

To provide ground truth (GT) labels for the ML based pipeline, a team
of NM physicians supervised by a highly qualified NM expert with 7 years of
practical experience in PET/CT diagnosis analyzed and annotated the whole
dataset using InterView FUSION. In a previous study [27], we have analyzed the
inter-observer variability aspects of GT annotation. The dataset is annotated in
a slice-based manner. Thus, each pathological hotspot was delineated as several
consecutive 2D regions of interest (RoIs) in subsequent slices, together forming
the volumes of interest (VoIs). On average, 20 pathological hotspots have been
identified for each patient (in total, 2067 pathological hotspots). The pathological
hotspots include primary uptake in prostate as well as metastatic uptake in other
organs such as bone and lymph nodes.

Fig. 3. The simplified schematic of the implemented multimodal U-Net based segmen-
tation network (PET-CT-U-Net). PET and CT slices are processed as separate chan-
nels. Two alternative models are applied: PET only, and PET/CT. Weighted binary
cross-entropy serves as the loss function.
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2.3 Automated Segmentation

The U-Net based segmentation unit, inspired by a single channel U-Net model
implemented for polyp segmentation [22], is a multi-channel network which takes
resampled images from original Dicom format PET and CT images as 2D sliced
input. In addition, the 2D sliced manually delineated GT masks are used as GT
labels. Also, the network internally creates the threshold based 40%-SUVMAX

masks from PET for quantitative as well as qualitative comparison. The seg-
mentation network defines two different models based on input channels: single
and dual. The simplified architecture of the automated segmentation network is
illustrated in figure 3.

In the first training step, the U-Net based model is trained and fit using
PET and the combinations of PET and CT. As a result, two alternative models
are trained, a model based on only PET and a model based on both PET and
CT images respectively. The 40%-SUVMAX masks are used to set a baseline for
performance analysis of the segmentation network. The U-Net model, developed
in Python V.3.6 and utilized TensorFlow and Keras libraries, consists of encoding
and decoding steps connected via a bridge layer. The input image sizes are set
to 256256 and the filter numbers are as follows: 16, 32, 48, 64, 128, 256, 480,
512. Thus, we customize the resolution levels compared to the original U-Net
architecture. By looping over the filter numbers and applying a 2D convolution
block followed by a 2D max pooling at each iteration, the encoding step is
taken. Then the bridge layer comes to action by applying a single 2D convolution
block. Afterwards, the decoding step loops over the reversed filter numbers and
applies a 22 upsampling followed by a 2D convolution block at each iteration.
Finally, a sigmoid activation layer is applied after 11 2D convolution to end up
with the output binary image. The 2D convolution block is composed of two 33
convolutions, each consisting of a batch normalization and a rectified linear unit
(ReLU) activation.

Due to the imbalance in the number of pixels in GT masks and background
and because the outputs of the network are predicted binary images, weighted
binary cross entropy is selected as the loss function. The segmentation quality
metric is measured as the Dice coefficient of the predicted and GT masks. The
networks are further tuned with different values for hyperparameters such as
batch size (values: 8 and 16), learning rate (values: 0.0001, 0.001, 0.01, and 0.1),
and up to 60 epochs. First, the train test split function of the model selection
class of Scikit-Learn library is applied to subdivide the training cohort into in-
terim train and validation subsets. Consecutively, the Dice coefficient of the
predicted masks and GT labels (encoded as 2D binary images) is determined to
fit the model. This process is repeated until the maximum number of epochs is
reached or the early stopping criteria (using TensorFlow’s EarlyStopping func-
tion with inputs: monitor=validation loss and patience=10) are met. Then, the
fitted model is used to predict the masks for the held-out test set. Finally, the
generated masks will be analyzed quantitatively (using Dice coefficients) as well
as qualitatively (by the experienced NM expert). To prepare the input dataset
for the therapy response prediction, the best predicted mask is used to calculate
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radiomics features. To this end, for each patient, the predicted mask is applied
to input images to calculate features using PyRadiomics library and end up with
patient-specific feature vectors.

2.4 Therapy Response Prediction

Once the radiomics features are generated from the segmentation unit, 6 differ-
ent ML classifiers (logistic regression [23], support vector machine (SVM) [24]
with linear, polynomial and radial basis function (RBF) kernels, extra trees [25]
and random forest [26]) are used for the task of prediction of responders to
177Lu-PSMA treatment. We further analyze the radiomics features and apply
recursive feature elimination to end up with the most relevant features to the
classification problem. Here, the same training cohort of 61 subjects as used for
the training of the segmentation network is applied for training and hyperpa-
rameter tuning in a cross validation (CV) step. For the CV, stratified KFold is
used with 3 folds. In each CV step, the train and validate feature vectors are
standardized using MinMax standardization method. For the hyperparameter
tuning, grid search is applied for all of the classifiers based on standard possible
ranges of each hyperparameter such as C and Gamma for the SVM classifiers and
max depth and min sample leaf for the decision tree based classifiers. For exam-
ple, the hyperparameter C ranged from 2-5 to 215 and min sample leaf ranged
from 1 to 10. In the final step, the performance of each classifier is measured as
applied to the feature vectors from the held-out test cohort. The performances
are quantified as area under the receiver operating characteristic (ROC) curve
(AUC), sensitivity (SE), and specificity (SP). As the baseline for comparison,
the classifiers performances are quantified as the GT mask is applied for the
calculation of radiomics features using PyRadiomics library.

Table 2. The performances of different U-Net based segmentation models as trained
and fit with the training cohort and applied to the test cohort. The performance of
40%-SUVMAX mask has been quantified for comparison. The precision, recall and Dice
values are mean and standard deviations over the test subject cohort. (lr: learning rate,
acc: accuracy).

Model/Mask epochs lr acc dice loss precision recall

40%-SUVMAX – – 99 39.62± 16.6 0.01 38.53± 21.38 51.48± 19.19

PET (Single) 35 0.001 99 71.51± 4.9 0.01 83.63± 5.3 63.38± 4.8

PET/CT (Dual) 32 0.001 99 82.18± 4.7 0.01 88.44± 4.8 77.09± 5.7

3 Results

3.1 Segmentation

As described in Methods section, we analyzed both singular (i. e. just PET) and
multiple (PET + CT) input channels to train and fit our segmentation model.
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Fig. 4. Example slices of the U-Net based segmentation results. The input PET and
CT slices, the ground truth (GT), 40%-SUVMAX PET, and predicted masks are shown.
The rows belong to unique 2D slices from arbitrary subjects of the test cohort.

Fig. 5. Receiver operating characteristic (ROC) curves based on GT masks and U-Net
predicted masks with feature selection. The 6 classifiers are trained and tuned on the
training set and applied to the test set (RBF: radial basis function, RFE: recursive
feature elimination, AUC: area under the curve, SE: sensitivity, SP: specificity).
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As a result, the best performance in terms of accuracy, precision, recall, and Dice
in training and test were observed by the multi-channel model with batch size
of 16, 0.99 test accuracy, 0.88 test precision, 0.77 test recall, and 0.82 test Dice.
Table 2 compares the achieved performances from the alternative U-Net models
and those of 40%-SUVMAX masks. Figure 4 provides a qualitative outline of the
segmentation results, comparing original input channels and multi-channel U-
Net model prediction. As the results suggest, the U-Net predicted mask performs
reasonably well as compared to the GT mask. Moreover, the U-Net prediction
outperformed the thresholding based mask, specifically, for the identification of
the physiological uptake (e. g., in livers and kidneys) which is considered as one
of the challenging tasks for computer based algorithms [27, 28]. Furthermore, the
proposed automated segmentation performs well in predicting bone metastasis
uptakes.

Table 3. The most relevant radiomics features selected by recursive feature elimination
(RFE) from both PET and CT modalities. For more information on the radiomics
features, refer to [19] (glrm: gray level run length matrix, glszm: gray level size zone
matrix).

Feature Group Feature Subgroup Feature Name

pet: diagnostics Image-original Mean

pet: original shape SurfaceVolumeRatio

ct: original shape MinorAxisLength

pet: original firstorder Energy

pet: original firstorder Maximum

pet: original firstorder Skewness

pet: original glrlm RunEntropy

pet: original glrlm RunLengthNonUniformityNormalized

pet: original glrlm RunPercentage

ct: original glrlm ShortRunEmphasis

ct: original glszm SmallAreaEmphasis

ct: original glszm SmallAreaLowGrayLevelEmphasis

pet: original glszm ZonePercentage

ct: original glszm ZonePercentage

3.2 Therapy Response Prediction

To analyze classifiers’ performances, radiomics features have been calculated
for both GT and U-Net predicted masks. A total of 120 radiomics features in-
cluding first and higher-order statistics such as minimum and maximum inten-
sity, textural heterogeneity parameters such as entropy and kurtosis, and run
and zone-length statistics are calculated for both PET and CT modalities using
PyRadiomics library. For the complete list of the features visit PyRadiomics of-
ficial documentation [19]. Among all the classifiers, logistic regression performed
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the best as applied to the radiomics features calculated based on GT masks with
AUC=0.81, SE=0.70, SP=0.75 on the test set. As the prediction performances
of all the classifiers as applied to U-Net predicted masks were not satisfactory
(AUC ranged from 0.41 to 0.55), recursive feature elimination technique has
been applied to identify most relevant features for the classification task. Table
3 shows the list of 14 features as selected by RFE method. Taking advantage of
feature selection, the classification performances of most of the classifiers have
been clearly improved. As previous work [14, 27] had suggested, features from
both PET and CT modalities contribute to the classification task. The overall
best performance belongs to random forest classifier with AUC=0.73, SE=0.81,
SP=0.58 as applied to the held-out test cohort. Figure 5 shows receiver operat-
ing characteristic (ROC) curves for all of the 6 classifiers as applied to radiomics
features calculated based on GT and U-Net predicted masks after applying re-
cursive feature elimination (RFE).

4 Discussion

Facilitating fast and accurate non-invasive diagnosis and prognosis has been
the objective of computer-aided diagnosis (CAD) for years. When it comes to
the oncological domain, especially in subjects in advanced metastatic stages,
CAD systems take over the histopathological analyses in many clinical practices.
This is globally justified as taking multiple biopsies from patients is ethically
questionable. However, the procedure of manual delineation of the malignant
tissues using established tools such as InterView FUSION is considered time
consuming and attention intensive. Therefore, the first goal of this study was to
develop an automated segmentation tool for multimodal PET/CT scans.

We retrospectively analyzed 2067 pathological hotspots from 100 PCa pa-
tients (on average, 20 pathological hotspots per patient). As shown in Results
section, our U-Net based multi-channel segmentation network predicts the patho-
logical masks with a high accuracy. Particularly, we showed that including the
PET and CT modalities as multiple channels outperforms predictions of the U-
Net model as trained only using the original PET channel. Also, the qualitative
analyses revealed that the multi-channel U-Net prediction is superior in discrim-
inating non-pathological uptake in liver and kidneys compared to 40%-SUVMAX

mask as a conventional threshold based method.
Predicting 177Lu-PSMA therapy response has been the second goal of this

study. To this end, we calculate radiomics features based on the U-Net predicted
masks. As radiomics analysis has been successfully used in many oncological
studies for treatment response prediction and analysis of overall survival [5, 14,
29, 30], combining automated segmentation with radiomics analysis for multi-
modal 68Ga-PSMA-PET/CT findings is another contribution of our method.
Results of the classification task confirm the potential of a fully automated ap-
proach, even though the comparison to predictions based on manual segmen-
tation still indicates room for improvement. In the future, we plan to explore
an end to end prediction of treatment response using a deep neural network.
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However, we expect that successfully training such an approach might require a
larger cohort.

In this study, we focused on 68Ga-PSMA-PET/CT scans and used a ret-
rospective dataset from a single NM center using a single PET/CT scanner.
However, the findings need to be further compared to that of other scanners as
well as other biomarkers such as fluorodeoxyglucose (FDG). To improve these
preliminary results, both the U-Net based segmentation as well as the radiomics
analysis pipelines should be enhanced. Furthermore, to implement decision sup-
port tools which can take part in clinical routines in near future, we plan to
include PET/CT images from different scanners and centers as well as other
biomarkers.

5 Conclusion

Successful prediction of 177Lu-PSMA treatment response would have a major
impact on clinical decisions in patients with advanced prostate carcinoma. To
our knowledge, we present the first fully automated system for this task. It is
based on applying a multi-channel U-Net to multimodal 68Ga-PSMA-PET/CT
scans, which automatically delineates pathological uptake with a high accuracy.
Supervised machine learning is then applied to radiomics features to predict
treatment response. We expect that training data from larger studies will further
increase the accuracy achieved by systems like ours, and will permit assessing
the generalizability of the results.

6 Data and Code Availability

Due to German regulations on medical data availability, we cannot disclose the
data, however all the data would be available for review on-site. The in-house
developed code is available online at https://gitlab.com/Moazemi/pet-ct-u-net.
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