
Memory Efficient Billboard Clouds for BTF Textured Objects

Jan Meseth, Reinhard Klein

Institute for Computer Science II
Computer Graphics Group

University of Bonn
Römerstr. 164, 53117 Bonn, Germany

Email: {meseth,rk }@cs.uni-bonn.de

Abstract

Efficiently rendering highly structured models dis-
tant from the viewer constitutes a difficult task since
the geometric complexity has to be reduced ex-
tremely while simultaneously preserving the over-
all visual quality. Recently, billboard clouds have
been introduced as an new solution to this problem.
They achieve acceptable performance by coarsely
approximating the geometry of a model while stor-
ing surface details as textures. Yet, important sur-
face detail due to self-shadowing, reflectance prop-
erties and changing silhouettes is lost.

In this paper we introduce Bidirectional Texture
Function (BTF) textured billboard clouds which
drastically increase the visual quality by preserv-
ing view- and light-dependent effects like reflec-
tion properties, changing silhouette and changing
shadows while preserving the fast rendering perfor-
mance. In order to utilize the gains of BTFs, we
propose two new methods for generation of mem-
ory efficient billboard clouds optimized for con-
nected and unconnected models that preserve the
normals of the model much better than previous ap-
proaches.

1 Introduction

Objects with very complex structure and appear-
ance are highly common in everyday life and there-
fore contained in many scenes modelled and ren-
dered in computer graphics. Experiencing virtual
life e.g. using terrain rendering requires visualiza-
tion of highly complex landscapes with mountains,
ridges and many more geographical features. In ad-
dition, natural scenes usually contain vast amounts
of vegetation like grass, bushes and trees. Mod-
elling and rendering such complex scenes at full de-

tail currently exceeds the capabilities of computer
graphics systems by far and most likely the increas-
ing capabilities of future hardware will not satisfy
the ever-growing needs of increased realism.

For many years already, researchers have focused
their work on reducing the complexity of rendered
scenes. One of the standard approaches to reduce
the rendered data is to adjust the complexity of the
displayed model to the perceivable quality, which
is called level of detail (LOD). Sophisticated and
highly efficient methods have been proposed for
displaying models of varying complexity at vary-
ing distance. Although these methods follow very
different approaches, all of them try to optimally
balance the amount of rendered primitives and ad-
ditional memory e.g. used for textures against the
achievable rendering quality.

Recently D́ecoret et al. [9] proposed billboard
clouds (BCs) as an efficient rendering representa-
tion. The basic idea of the approach is to coarsely
approximate the geometry of a rendered object by
a set of quads and encoding fine-grained detail
like surface roughness, surface color or the silhou-
ette in normal and color textures. Since current
graphics boards are highly optimized to handle tex-
tures, such representations can be rendered very
efficiently. Compared to other approaches, BCs
achieve limited appearance preservation while at
the same time requiring only very few geometric
primitives to be rendered. A huge advantage of this
method is that it can handle arbitrary polygon soups
and even point clouds unlike most standard simpli-
fication algorithms.

Like all image-based approaches, BCs tend to
use much texture memory. Employing the BC
generation method proposed by Décoret et al. this
amount may well be a couple MBs for models pro-
jected to at most 100×100 pixels. Nevertheless,

VMV 2004 Stanford, USA, November 16–18, 2004

Figure 1: View-Independence Problem. The figure
shows a curved surface (left and top), compared to
an approximating textured quad (bottom). While
the colors and the silhouette of the quad are correct
for the frontal view (middle), they become incorrect
for other view directions (right).

alternative representations like point-clouds require
similar amounts of memory to achieve comparable
visualization results1.

However, existing BC schemes have deficiencies
as well. The first will be calledview-independence
problem in the remainder of the paper: view- and
light dependent reflectance properties cannot be
represented by a single texture and are therefore lost
in the BC representation. In addition, other effects
like view-dependent silhouettes and occlusions or
light-dependent self-shadowing due to small sur-
face detail are not preserved (compare figure 1).

A second problem is thenormal samplingprob-
lem: the normals of approximating quads may be
completely different than the normals of the approx-
imated faces which can lead to missing pixels in the
resulting image (see figure 3).

In this paper, we propose novel BC construc-
tion algorithms optimized for connected meshes
and polygon soups that improve the abovemen-
tioned problems. The normal sampling problem
is solved by providing explicit control over nor-
mals represented by a plane, the view-independence
problem is significantly improved by utilizing view-
and light-dependent textures (i.e. Bidirectional Tex-
ture Functions (BTFs)). Since BTFs require even
more storage than textures, we additional control
the amount of required texture memory. In addi-
tion, our methods generate hierarchical BCs which
can be employed for LOD rendering and easily ex-
tend to BC generation from point clouds.

The following text is structured as follows: in
section 2 we describe related research results and

1Our tests showed that rendering the plant model in figure 4
using QSplat [25] requires about 120k points for a displayed image
of about 100×100 pixels resulting in about 500 kB of memory for
storage of the points and their normals.

distinguish our work from existing publications.
Section 3 provides details on our solution to the
view-independence problem. Section 4 describes
and analyzes an existing BC construction technique
before introducing our new methods. In section 5
we present results of our methods before we con-
clude.

2 Related Work

2.1 Appearance Preserving Extreme Sim-
plification

Appearance preserving extreme simplification is
concerned with generating LOD representations
containing a few hundreds of polygons that well
represent the appearance of the original object for
very distant viewing. Approaches in this area are
typically image-based since they produce LOD rep-
resentations sensitive to the projected screen size
and not to the geometric complexity of the input ge-
ometry.

Among the earliest image-based approaches are
static impostors, proposed by Maciel and Shirley
[20], which replace large parts of the geometry by a
single textured polygon. The approaches of Schau-
fler et al. [29] and Shade et al. [32] dynamically
update the texture to match the current viewpoint.
Later approaches aimed at improvings parallax ef-
fects using layered impostors [30, 8], layered depth
images [33, 24] or more complex, textured geome-
try [37, 15] which makes single impostors valid or
acceptable for a larger set of viewpoints at the cost
of increased texture, geometry and rendering com-
plexity.

The recent approaches of Décoret et al. [9] and
Andujar et al. [2] introduce and utilize the already
described concept of BCs. Unlike most previous
methods this solution is view-independent making
it very efficient for real-time rendering. Unfortu-
nately, the presented methods generate BCs which
require much texture memory and fail to solve
the abovementioned normal-sampling and view-
dependence problems. Another view-independent
approach is followed by Decaudin and Neyret [7]:
they sample objects into 3D textures which are ef-
ficiently rendered using volume visualization tech-
niques. Although highly efficient rendering is pos-
sible, 3D textures require even larger amounts of
texture memory.

666

Standard geometric simplification algorithms
(for an overview see [19]) are highly efficient for
objects containing large or moderate numbers of
triangles but usually fail to reproduce the appear-
ance of extremely simplified versions due to com-
plex silhouettes and surface details. Among the
notable exceptions are appearance preserving sim-
plification [5], which controls the deviation of tex-
ture placement in the original and simplified model,
illumination-dependent refinement [18], which dy-
namically increases the polygon count in highlight
regions, resampling of surface details into textures
[4] and the silhouette clipping approach of Sander
et al. [26], which additionally corrects the silhou-
ette of the textured polygonal model. Unfortunately,
none of them produces good results for meshes of
arbitrary topology and complexity.

Geometric simplification targeted at point-based
rendering [12, 25, 23] represents another group
of methods for extreme simplification. Like the
triangle-based simplification approaches the num-
ber of primitives of simplified objects is related to
the complexity of the input model, making them
less performant than image-based methods. Yet,
the optimal adjustment to the screen resolution is
much easier, making them applicable more widely
than specialized algorithms for extreme simplifica-
tion. An interesting combination of point-based and
image-based rendering was employed by Wimmer
et al. [39] which utilzes point-clouds with view-
dependent colors for realistic visualizations of dis-
tant architectural models but still suffers from a rel-
atively large number of points required for sufficient
visual quality.

2.2 Geometry Clustering

Memory efficient billboard construction implies
finding an optimal set of textured quads such that
the appearance of the object is best preserved at
minimal costs. In other words: efficient billboard-
clouds represent an optimized set of possibly over-
lapping clusters of geometry where each cluster is
well approximated by a textured quad.

Finding optimal clusters of geometry has been
the topic of various publications. Focusing on sim-
plification of connected triangular meshes Kalvin
and Taylor [17] presented a bottom-up approach for
merging adjacent, planar faces. The merge-criterion
is based on thresholding the maximum normal devi-
ation and maximum geometric error with respect to

a best-approximating plane, and additional thresh-
old constraints ensuring compact shape and avoid-
ance of foldovers. A very similar approach was ap-
plied to the field of mesh generation by Sheffer et
al. [34]. A following publication of Inoue et al. [14]
introduced an ordering scheme for the merge oper-
ation based on a weighted sum of terms measuring
flatness, boundary smoothness and merge area re-
sulting in a deterministic algorithm. Unfortunately,
choosing appropriate weights is highly unintuitive
and requires various tries. The improved approach
of Sheffer [35] allows clustering into smooth, not
necessarily planar regions but suffers from the lim-
itation to connected models and the unintuitive se-
lection of weights. Although targeted at a differ-
ent application area, the publications of Garland et
al. [11] and Sander et al. [27] employ very similar
ideas to decompose a connected mesh into separate
charts suitable e.g. for parametrization. Like related
approaches, their merge-criteria are computed as a
weighted sum of components.

Clustering approaches based on top-down strate-
gies are frequently used in computer graphics em-
ploying spatial data structures like kd-trees, octrees
or grids. One such approach is clustering of point-
clouds with normals and colors for efficient render-
ing [16] but many others exist as well.

3 BTF Textured Billboard Clouds

Billboard clouds (BCs) are textured quads that ap-
proximate the geometry and surface detail of a
model at a coarse LOD. Besides convincing ren-
derings of the simplified model, this representation
provides the possibility to efficiently cast approxi-
mate shadows since the silhouette of the object is
well preserved.

Nevertheless, since the silhouette is view-
dependent, such shadows will be incorrect for most
light-directions using simple textures. In addition,
changing surface appearance due to reflectance
properties of the surface material, occlusion and in-
terreflection cannot be preserved.

Such information can efficiently be stored as a
view- and light-direction dependent texture which is
called a Bidirectional Texture Function (BTF) and
which was first introduced by Dana et al. [6]. Figure
2 shows the increased quality of BTF textured BCs
compared to standard textured ones.

Unlike the original intention of the BTF, which

666

Figure 2: Comparison of standard BC with texture
and normal map (left) with BTF textured one (mid-
dle) and original model (right). The resolution of
the texture and BTF are optimized for distant view-
ing (small images).

stores reflectance for a flat sample and therefore
requires sampling of view- and light-directions on
the hemisphere only, the BTFs used for representa-
tions of BCs represent non-flat regions and there-
fore sampling of the complete sphere (for view-
directions this can be neglected since rendered
primitives will be invisible for view-directions
outside the hemisphere). Hence, for this pur-
pose we generalize the BTF to a 6D function
BTF (x, y, θv, φv, θl, φl) of the surface location
(x, y), view direction(θv, φv) and light-direction
(θv, φv) (represented both by spherical coordi-
nates) whereθv ∈ [0, π

2
], θl ∈ [0, π], andφv, φl ∈

[0, 2π[. Construction of such BTFs can efficiently
be done using either rasterization hardware as in [9]
for changing view- and light-directions in combina-
tion with a shadowing algorithms or using a sim-
ple raytracer. Resulting BTFs feature accurate sam-
pling, which is especially important for e.g. forest
scenes since trees contain nearly arbitrarily oriented
leaves (see figure 8).

Since BTFs require much more memory than
simple textures, one needs to choose a reasonable
compression algorithm for rendering (we chose the
algorithm from M̈uller et al. [21]) and an efficient
scheme for BC construction that minimizes the
number of texels required for coding of surface de-
tail. Such schemes reduce the amount of memory
produced during BTF construction (which ranges
up to several GBs) and reduce the compression error
since additional texels tend to introduce additional
variance into the BTF data.

4 Billboard Cloud Construction

Constructing optimal BCs is a very difficult since
computationally expensive task. One needs to con-
currently minimize:

1. the amount of memory for the textures,
2. the number of primitives that approximate the

geometry, and
3. the loss of visual quality of the rendered

model (which includes minimizing the view-
independence and normal-sampling prob-
lems).

Since generation of optimal BCs is an NP hard
problem [9], an optimal solution is unpractical.
Therefore, in the following subsections we will first
discuss an existing greedy algorithm that computes
a solution to the problem. Afterwards, we will
present our new improved approaches and compare
them to the first one.

4.1 Hough Space

Décoret et al. [9] suggest to build BCs using the 3D
equivalent of the Hough transform [13]: a plane is
represented by the spherical coordinates(θ, φ) of
its normal and its distanced to the origin. All faces
of the original mesh are inserted into a regular grid
which represents s spatial subdivision of 3D Hough
space. For each cellC of the gridvalid andmissed
faces are determined. A faceF is considered valid
with respect toC if there exists a planeP ∈ C
such that the Euclidean distance betweenP and the
vertices ofF is smaller than the prescribed approx-
imation errorεa. F is considered missed if there
exists a planeP ∈ C such that the distance be-
tweenP and the vertices ofF against the direction
of the normal ofP is larger thanεa but smaller than
εa+εm whereεm can as well be chosen by the user.

Extraction of planes for the BC is done in a
greedy fashion based on the accumulated, projected
areas of valid and missed faces stored in the grid
cells. After determination of each new plane, the
contributions of faces withinεa distance of the new
plane are removed from the grid cells. The process
terminates when all faces are covered.

As a next step, for each extracted plane all points
of the original mesh withinεa distance are projected
onto it and the result is stored in a texture. To opti-
mize texture use, textures are split into parts if un-
connected, compact regions are detected.

666

Figure 3: Normal sampling problem of the Hough
space approach. Due to the lengthy shape of the
body (left: original model with 25k triangles), many
parallel planes were chosen to represent the geome-
try. While the frontal view of the BC (second from
left) looks correct, pixels are missing when seen
from the side even at the desired projection size
(small images).

The advantage of this approach is the applicabil-
ity to arbitrary triangle soups and the small number
of resulting textured quads (see table 1).

Unfortunately the approach does not explicitly
handle the deviation of face normals from the nor-
mal of the textured quad which represents them
(for a bad example see figure 3). It is only due to
the redundant sampling of surface points that only
few cases exist where the problem really becomes
apparent. As a result, BCs generated using this
method require two-sided rendering.

Even worse, the method provides no control on
the amount of required texture space since Hough
space is insensitive to Euclidean distances and
therefore it can easily occur that very distant ge-
ometries are represented by the same plane. The
approach for texture optimization can resolve a very
limited number of such cases only, leading to exces-
sive texture memory requirements in many cases.
Since texture space is already the limiting factor for
application of BCs, other generation methods are
required for reasonable simplification errors. In the
following, our two new techniques are represented
which provide solutions to these problems.

εgc Hough HFC Simpl.
4 34 29k 200 34k 1.2k 2.5k
2 116 334k 566 139k 3.1k 17k
1 448 2.9M 1.5k 500k 6.0k 67k
.5 1.2k 22M 1.9k 1.4M 9.8k 313k
4 34 30k 60 6.9k 66 4k
2 62 175k 93 26k 168 17k
1 164 1.6M 193 112k 195 70k
.5 434 14M 478 432k 404 280k
4 4 0.9k 99 0.8k 70 0.6k
2 10 6.1k 102 3.1k 95 3.3k
1 30 67k 121 12k 194 24k
.5 88 600k 200 43k 419 150k

Table 1: Comparison of the BC construction algo-
rithms. Per method, model and chosen geometric
errorεgc (specified as percentage of the longest side
of the bounding box) the number of geometric prim-
itives (left column) and the number of texture pixels
(right column) is given. Each block of four rows is
associated to a specific model (top: plant, middle:
Max Planck head, bottom: man).

4.2 Mesh Simplification

Our first method for memory-efficient construction
of BCs is based on the standard way of reducing
the complexity of models by successively removing
vertices, edges or faces of a given model: mesh sim-
plification algorithms [19]. In contrast to the previ-
ous Hough space approach which extracts globally
optimal planes, mesh simplification algorithms are
usually based on local optimization.

In principle, standard mesh simplification algo-
rithms allowing for topology simplification can be
employed for determination of approximating ge-
ometry for BC generation. Yet, since an accurate
evaluation of the geometric error between the origi-
nal mesh and the simplified mesh is required, meth-
ods guaranteeing tight error bounds like the one of
Borodin et al. [3] are preferred.

As table 1 shows, applying these techniques
to connected, smooth and preferrably manifold
meshes yields models of rather low polygon count
and minimal texture space requirements. In addi-
tion, the deviation of normals from the normal of
the approximating triangle can simply be controlled
using normal cones [36].

For unconnected meshes like trees, mesh simpli-
fication algorithms performed much worse in our
tests (although texture requirements remain very
low): the number of triangles increases significantly
compared to the Hough space approach and the re-
sults largely reduce in rendering quality due to the

666

complex silhouettes of unconnected meshes which
cannot be represented adequately. Enlarging the
BC triangles to compensate for this problem un-
fortunately increases the texture requirements sig-
nificantly (in our experiments the required texture
space was doubled approximately).

4.3 Hierarchical Face Clustering

Our second new approach to BC generation is based
on ideas from hierarchical face clustering [11]. The
key idea of this method is to iteratively merge pairs
of adjacent surface patches based on some energy
function. Since face clustering is limited to con-
nected meshes, we generalized the definition of ad-
jacent patches.

4.3.1 Spatial Proximity

One of the central points of hierarchical face clus-
tering is the concentration on adjacent patches
which is necessary for charting but hinders general
BC construction. For our needs, working on adja-
cent patches makes sense only insofar as they result
in connected areas and therefore efficient texture
use. Yet, since arbitrary meshes consist of many
unconnected parts, the approach misses many per-
fectly reasonable opportunities to merge geometry.
We therefore generalize the notion of adjacency to
spatial closeness which removes the limitation to
connected input meshes. Spatial closeness can ef-
ficiently be computed even for large meshes using a
spatial data structure (SDS) like a grid or an octree.

An important parameter for computation of spa-
tially close parts is the definition of closeness. The
most intuitive approach will relate closeness to Eu-
clidean distance. Following this definition, one has
to compute all pairs of primitives that are no fur-
ther apart than a predefined threshold. Unfortu-
nately, to balance the amount of possible pairs dur-
ing the merging process, this threshold needs to
be increased over time. This introduces additional
complexity into the algorithm.

Therefore, we define a primitivep1 to be close to
another onep2, if at mostn−1 other primitives have
a smaller Euclidean distance top2 than p1. This
methods leads to an easy yet efficient control of the
number of possible merges and requires the user to
define a single threshold only. During our experi-
ments, we determined that ann of around 50 leads
to very good results which increase at most slightly

for higher values ofn. Nevertheless, this parameter
varies from model to model since it depends on the
model’s geometric structure.

Another problem closely related to the run-time
efficiency is the choice of an adequate number of
spatial subdivisions introduced by the SDS. Our im-
plementation generates an initial subdivision based
on the axis-aligned bounding volume of the model
and the number of its primitives. This subdivision
is adjusted at runtime (the spatial resolution in each
dimension is halved as soon as the number of primi-
tives reduces by a factor of eight) resulting in a good
balancing of the number of subdivisions to the num-
ber of remaining primitives.

4.3.2 Cost Function

Generalized hierarchical face clustering can be for-
mulated as a minimization problem on the proxim-
ity graph. We define the proximity graph to consist
of nodes representing primitives of the object and
weighted edges connecting spatially close primi-
tives, where weights represent costs of merging two
nodes. The graph is simplified by merging con-
nected nodes until a predefined number of nodes re-
mains or until any further merge operation requires
costs above a predefined threshold. The sum of
costs for simplification is to be minimized.

In contrast to standard face clustering ap-
proaches, which try to achieve well parameteri-
zable, compact charts, we want to minimize the
amount of texture space. For our needs, the merge
costs will therefore be combined of three different
parts that measure geometric approximation error
(i.e. maximum distance to a fitting plane), normal
deviation and texture waste.

Given a pair of adjacent patches(P1, P2), the
geometric errorεg is simply half the length of the
smallest side of the smallest oriented bounding box
(OBB) containingP1 andP2. The OBB and the re-
spective best approximating planepa can efficiently
be computed using principal component analysis.
The normal deviation errorεn is defined as:

εn = max {acos 〈n (f) |n (pa)〉 |f ∈ P1 ∪ P2} (1)

with n(x) denoting the normal of facex. Texture
wasteεt is a more accurate version of the shape er-
ror from Garland et al. [11] optimized to our needs
and is computed as:

666

εt =

∑
f∈P1∪P2

area(f)

area(pa)
(2)

Since weighting these errors to compute the
merge costs is a very difficult task (since appro-
priate weights are hard to determine) we utilize
only one to define an ordering among the valid
pairs while the others serve as hard rejection criteria
defining validity. Since experience from LOD re-
search shows that hierarchical LODs (HLODs) [10]
lead to much better performance than continuous
LODs, we need only be concerned about discrete
LODs for hierarchical BCs. Therefore, setting a
threshold forεg for the most accurate HLOD level
and doubling it for each coarser level is a reason-
able choice that sorts possible merges into clusters
assigned to the different HLOD levels. Since the
major reason for including normal deviation in the
evaluation is the minimization of the normal sam-
pling problem,εd can be thresholded as well. A
setting ofεdm = 60◦ e.g. guarantees that no such
problems can occur for spheres and cylinders (com-
pare as well figure 5).

Based on these definitions, the cost of a possible
merge can be computed as

MergeCost =

{
∞
∞
εt + kεtm

εn > εnm

εt > εtm

else
(3)

wherek ∈ N is either zero ifεg ≤ εgm or other-
wise determined by2k−1εgm ≤ εg ≤ 2kεgm .

Pairs resulting in too high normal deviation or
texture waste are rejected. Pairs with valid nor-
mal deviation and texture waste are grouped into
two categories: if the geometric error is below
the thresholdεgm for the finest HLOD level, their
merge cost is equal to the texture waste. If the ge-
ometric error is above the threshold for the finest
level, the appropriate LOD levelk for which the ge-
ometric error is valid is determined and the cost is
computed asεt + kεtm which assures that no such
merge is executed before all possible merges from
the previous LOD levels are performed.

This new method has the big advantage that
the required amount of texture space can be re-
duced significantly compared to the Hough space
approach while preserving the high visual quality
of resulting BCs (see figure 6). In addition, gen-
erated BCs contain relatively few textured triangles

and the inherent control over normal deviation elim-
inates most visible cases of the normal sampling
problem.

5 Results

During our experiments, we generated BCs with
each of the above schemes. While standard hier-
achical face clustering and mesh simplification of
connected meshes turned out to be the fastest meth-
ods due to the restricted search-space (few seconds),
the runtimes of the more general methods for un-
connected models turned out to be very similar (few
minutes). As stated above already, the results gen-
erated by the methods vary greatly.

Computation of BTFs on the BCs was done us-
ing either rasterization or a simple raytracer. While
rasterization provides run-time advatanges (about 2
hours for the model in figures 2 and 7 - bottom row),
raytracing allows better quality due to pixel-correct
shadows and interreflections (see top row of figure
7 and figure 8). Fortunately, both approaches can
easily be parallelized.

The raw BTF requires about 30k memory per
texel in the BC (about 1.8 GB for the model in fig-
ures 2 and 7). Using the Hough space approach,
about 18 GB would be required.

The final amount of data per BTF textured BC
was significantly reduced to about 17 MBs for
the presented models by applying the compression
method of M̈uller et al. [21], which enables efficient
rendering using standard programmable graphics
hardware (see [31]).

6 Conclusions and Future Work

In this paper we have analyzed various problems
of BCs, some of which are related to the respec-
tive construction method and some are inherent
to the approach. We proposed BTFs as solutions
to the view independence problem and presented
new, memory-aware BC construction algorithms
that solve the normal sampling problem.

As future work, the suitability of view-dependent
displacement maps [38] for representation of sur-
face detail of BCs should be investigated. In ad-
dition, a comparison between the rendering qual-
ity and speed of BCs and 3D texture based ap-
proaches [7] might provide interesting insights. Fi-
nally, combinations with the occlusion culling ap-

666

proach of Sayer et al. [28] should be tested since
their approach might nicely combine with our view-
dependent BTF silhouettes.

Acknowledgements

This work was partially funded by the European
Union under project RealReflect (IST-2001-34744).
The man model was gratefully provided by the Vir-
tual Try-On project.

References

[1] A. Adamson and M. Alexa, “Approximating and Intersect-
ing Surfaces from Points”, Proc. of Symposium on Geom-
etry Processing 2003, pp. 230–239, 2003.

[2] C. Andújar, P. Brunet, A. Chica, J. Rossignac, I. Navazo,
and A. Vinacua, “Computing Maximal Tiles and Appli-
cation to Impostor-Based Simplification”, to appear in
Proc. of Eurographics 2004.

[3] P. Borodin, S. Gumhold, M. Guthe, and R. Klein, “High-
Quality Simplification with Generalized Pair Contrac-
tions”, Proc. of Graphicon’2003, pp. 147–154, 2003.

[4] P. Cignoni, C. Montani, R. Scopigno, and C. Rocchini, “A
General Method for Preserving Attribute Values on Simpli-
fied Meshes”, IEEE Visualization 1998, pp. 59–66, 1998.

[5] J. Cohen, M. Olano, and D. Manocha, “Appearance
Preserving Simplification”, Proc. of SIGGRAPH 1998,
pp. 115–122, 1998.

[6] K. Dana, B. van Ginneken, S. Nayra, and J. Koenderink,
“Reflectance and Texture of Real World Surfaces”, IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 151–157, 1997.

[7] P. Decaudin and F. Neyret, “Rendering Forest Scenes
in Real-Time”, Proc. of EG Symposium on Rendering,
pp. 93–102, 2004.

[8] X. Décoret, F. Sillion, G. Schaufler, and J. Dorsey, “Multi-
Layered Impostors for Accelerated Rendering”, Computer
Graphics Forum, 18(3), pp. 61–73, 1999.

[9] X. Décoret, F. Durand, F. Sillion, and J. Dorsey, “Billboard
Clouds for Extreme Model Simplification”, Proc. of SIG-
GRAPH 2003, pp. 689–696, 2003.

[10] C. Erikson, D. Manocha, and W. Baxter, “HLODs for
Faster Display of Large Static and Dynamic Environ-
ments”, Proc. of Symposium on Interactive 3D Graphics,
pp. 111-120, 2001.

[11] M. Garland, A. Willmott, and P. Heckbert, “Hierarchical
Face Clustering on Polygonal Surfaces”, ACM Symposium
on Interactive 3D Graphics, pp. 49–58, 2001.

[12] J. Grossmann and W. Dally, “Point Sample Rendering”,
Proc. of 9th EG Workshop on Rendering, pp. 181–192,
1998.

[13] P. Hough, “Method and Means for Recognizing Complex
Patterns”, US patent 3,069,654, 1962.

[14] K. Inoue, T. Itoh, A. Yamada, T. Furuhata, and K. Shi-
mada, “Clustering a Large Number of Faces for 2-
Dimensional Mesh Generation”, Proc. of 8th Internat.
Meshing Roundtable, pp. 281–292, 1999.

[15] S. Jeschke and M. Wimmer, “Textured Depth Meshes for
Real-Time Rendering of Arbitrary Scenes”, Proc. of the
13th EG Workshop on Rendering, pp. 181–190, 2002.

[16] A. Kalaiah and A. Varshney, “Statistical Point Geome-
try”, Proc. of Symposium on Geometry Processing 2003,
pp. 107–115, 2003.

[17] A. Kalvin and R. Taylor, “Superfaces: Polygonal Mesh
Simplification with Bounded Error”, IEEE Computer
Graphics and Applications, 16(3), pp. 65–77, 1997.

[18] R. Klein and A. Schilling, “Efficient Rendering of Multires-
olution Meshes with Guaranteed Image Quality”, The Vi-
sual Computer, 15(9), pp. 443–452, 1999.

[19] D. Luebke, M. Reddy, J. Cohen, A. Varshney, B. Watson,
and R. Huebner, “Level of Detail for 3D Graphics”, Morgan
Kaufmann, ISBN 1558608389, 2002.

[20] P. Maciel and P. Shirley, “Visual Navigation of Large En-
vironments using Textured Clusters”, ACM Symposium on
Interactive 3D Grapics, pp. 95–102, 1995.

[21] G. Müller, J. Meseth, and R. Klein, “Compression and real-
time Rendering of Measured BTFs using local PCA”, Vi-
sion, Modeling and Visualisation 2003, pp. 271–280, 2003.

[22] NVidia Corporation, “Mipmapping Normal Maps”, 2004.
[23] H.-P. Pfister, M. Zwicker, J. van Baar, and M. Gross, “Sur-

fels: Surface Elements as Rendering Primitives”, Proc. of
SIGGRAPH 2000, pp. 335–342, 2000.

[24] V. Popescu, A. Lastra, D. Aliaga, and M. De Oliveira Neto,
“Efficient Image Warping for Architectural Walkthroughs
using Layered Depth Images”, IEEE Visualization,
pp. 211–215, 1998.

[25] S. Rusinkiewicz and M. Levoy, “QSplat: A Multiresolution
Point Rendering System for Large Meshes”, Proc. of SIG-
GRAPH 2000, pp. 343–352, 2000.

[26] P. Sander, X. Gu, S. Gortler, H. Hoppe, and J. Snyder, “Sil-
houette Clipping”, Proc. of SIGGRAPH 2000, pp. 327–
334, 2000.

[27] P. Sander, Z. Wood, S. Gortler, J. Snyder, and H. Hoppe,
“Multi-Chart Geometry Images”, Proc. of Symposium on
Geometry Processing 2003, pp. 146–155, 2003.

[28] E. Sayer, A. Lerner, D. Cohen-Or, Y. Chrysanthou, and
O. Deussen, “Aggressive Visibility for Rendering Ex-
tremely Complex Foliage Scenes”, Proc. of IK 2004.

[29] G. Schaufler and W. Stürzlinger, “A Three-Dimensional Im-
age Cache for Virtual Reality”, Computer Graphics Forum,
15(3), pp. 227–236, 1996.

[30] G. Schaufler, “Per-Object Image Warping with Layered Im-
postors”, Proc. of the 9th EG Workshop on Rendering,
pp. 145–156, 1998.

[31] M. Schneider, “Real-Time BTF Rendering”, Proc. of the
8th CESCG, pp. 79–86, 2004.

[32] J. Shade, D. Leschinski, D. Salesin, T. DeRose, and J. Sny-
der, “Hierarchical Image Caching for Accelerated Walk-
throughs of Complex Environments”, Proc. of SIGGRAPH
1996, pp. 75–82, 1996.

[33] J. Shade, S. Gortler, L.-W. He, and R. Szeliski, “Layered
Depth Images”, SIGGRAPH 1998, pp. 231–242, 1998.

[34] A. Sheffer, T. Blacker, and M. Bercovier, “Clustering:
Automated Detail Suppression using Virtual Topology”,
Trends in Unstructured Mesh Generation, ASME Press,
pp. 57–64, 1997.

[35] A. Sheffer, “Model Simplification for Meshing using Face
Clustering”, Computer-Aided Design, 33, pp. 925–934,
2001.

[36] L. Shirmun and S. Abi-Ezzi, “The Cone of Normals Tech-
nique for Fast Processing of Curved Patches”, Computer
Graphics Forum, 12(3), pp. 261–272, 1993.

[37] F. Sillion, G. Drettakis, and B. Bodelet, “Efficient Im-
postor Manipulation for Real-Time Visualization of Urban
Scenery”, Computer Graphics Forum, 16(3), pp. 207–218,
1997.

[38] X. Wang, X. Tong, S. Lin, S. Hu, B. Guo, and H.-Y. Shum,
“Generalized Displacement Mapping”, Proc. of EG Sym-
posium on Rendering 2004, pp. 227–233, 2004.

[39] M. Wimmer, P. Wonka, and F. Sillion, “Point-Based Impos-
tors for Real-Time Visualization”, Proc. of EG Workshop
on Rendering 2001, pp. 163–176, 2001.

666

Figure 4: Plant model. Left and mid-
dle: original model (12k triangles). Right:
BCs for 0.5%, 1% and 2% approximation
error (compare table 1).

Figure 5: BC of man model from HFC (1% approximation
error, no BTF): the normal sampling problem is solved by set-
ting a maximum normal deviation of60◦. While the silhouette
is incorrect in closeups (left), artifacts vanish when the desired
projection size is approached (right).

Figure 6: Comparison of visual quality of
BCs generated from Hough Space (left)
and HFC (right) at 1% approximation er-
ror. Although the visual quality is very
similar, the right model requires 6 times
less texture memory (see table 1).

Figure 7: Views of BTF textured Max Planck head BC (123
textured quads) for varying view and light-directions. The ap-
pearance of the surface material varies drastically. Top: lac-
quered wood with shadows encoded in the BTF (see ear and
nose), bottom: plasterstone BTF without shadows.

Figure 8: Relighting of distant wood scene. Occlusion and shadowing are correctly represented in the
BTF and therefore the images of the distant trees due to the correct resampling used for BTF construction.
Such results are not achievable with normal maps due to the large variance of normals per pixel even using
improved techniques like mipmapping of normal maps [22].

666

