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Abstract
There is a general shortage of standardized comparisons in the field of appearance modeling. We therefore
introduce a benchmark for assessing the quality of reflectance models on a dataset of high quality material mea-
surements obtained with a commercial appearance scanner. The dataset currently consists of 56 fabric materials
which are measured as radiometrically calibrated HDR images together with a precise surface geometry. We pose
a public challenge to attract further participation and spark new research. Participants evaluate their models on
provided directional light and view sampling to recreate the appearance of a set of unseen images per material.
The results are automatically evaluated under various image metrics and ranked in a public leaderboard. Our
benchmark provides standardized testing and thus enables fair comparisons between related works. We also
release baseline SVBRDF material fits.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

Appearance modeling deals with finding representations of
captured or simulated reflectance. The goal is to recre-
ate realistic reflectance behanvior when evaluating the de-
veloped models. Before modelling, one needs to acquire
real surface reflectance. This usually requires expensive and
carefully calibrated setups that densely sample the surface
in the angular domain of light and view directions. Spe-
cialized, self-calibrating hardware allows to capture spa-
tially resolved reflectance on a large scale [Deb12,KNRS13,
SRT∗14, XR18]. In parallel developed software packages
like Adobe’s Substance Designer [Sub20a] and Quixel’s
Mixer [Mix20] provide convenient tools for artists to cre-
ate realistic materials. Thus, obtaining databases of hundreds
of different material samples is easily possible. Commercial
databases like Adobe Substance3D [Sub20b], Poliigon Tex-
tures [Pol20], or the Quixel Megascans [Meg20] are abun-
dant, but difficult to use for research purposes due to high
purchase costs. A line of works [NDM05, DAD∗18, DJ18,
MHRK19] publicly released their datasets, enabling usage
of such material collections as training data for machine
learning techniques [LXR∗18, LSC18, YLD∗18, BMS∗19,
BL19, DAD∗19, GLD∗19, KXH∗19, RJGW19, VCGLM19,
BXS∗20, BJK∗20, RGJW20].

The growth of available data has so far not provided any
means for systematic comparisons between existing works.
Appearance modelling has the advantage that methods can
be directly evaluated on training materials by just picking a
new combination of light and view directions that is unseen
in the training data. This is in fact how most works are val-
idated. However, only few of them provide extensive com-
parisons with related works. This is mainly for two reasons:
First, not all existing works provide their code, while the
re-implementation effort is usually not justified for compari-
son purposes only. Second, a lot of works do not provide the
datasets they use for their evaluation, ruling out comparisons
of new methods against their previous results.

We are therefore motivated to improve this situation by es-
tablishing a benchmark for appearance modelling. We build
upon the UBOFAB19 material database [MHRK19] which
consists of 378 fabric materials, scanned with a commer-
cial appearance scanner [XR18]. Each scan consist of sev-
eral hundred radiometrically calibrated HDR images, asso-
ciated with pixel-wise light and view directions. We extend
this dataset with the APPBENCH release of 56 completely
new fabrics. Contrary to UBOFAB19, 10% of the HDR im-
ages are held back for usage in the benchmark evaluation.
We only provide the directional sampling for the images in
this holdout set. Thus, one can ensure that comparisons are
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Figure 1: Overview of the 56 new fabric materials released in our APPBENCH dataset, available at https://cg.cs.
uni-bonn.de/appbench/. Colored frames indicate the fabric type.

fair, as the images in the holdout set are guaranteed to be
unseen. We pose the benchmark as a challenge on the co-
dalab platform, where participants can upload their meth-
ods’ reconstructions. These uploaded images are automati-
cally evaluated against the ones in the holdout set under a
set of standard image metrics.

2. Related Work

Perhaps most closely related to our work is the SynBRDF
benchmark dataset [KGT∗17]. It consists of 5000 Ward
BRDFs, rendered on 5000 shapes under 20 natural envi-
ronment maps. The authors create half a million LDR and
HDR RGBD images together with ground truth information
of BRDF parameters, 3D shape, illumination and camera
pose. However, the dataset is more interesting for “in-the-
wild” settings, whereas our contribution is based on radio-
metrically calibrated reflectance measurements. This allows
much better investigation of the reflectance models’ accu-
racy, as other error sources, resulting e.g. from inaccura-
cies in the illumination, are ruled out. More importantly, the
BRDF parameters in SynBRDF are sampled from OpenSur-
faces [BUSB13], a dataset of real-world photographs anno-
tated with homogeneous BRDF parameters. However, vari-
ations in surface reflectance make up a crucial part of real
object appearance and perfectly homoegenous surfaces are
the exception. There are several other works with homoge-
neous BRDF datasets, most of which are measured in cali-
brated setups like gonioreflectometers [MPBM03, FVH14,
FV14, DJ18]. We consider heterogenous surfaces a much
more challenging and realistic setting, which is why we use
spatially varying reflectance in our benchmark.

Deschaintre et al. [DAD∗18] released an extensive dataset
of renderings of spatially varying, but synthetic materials.
Though considerably realistic, these materials tend to lack
the last bit of imperfections and variations that distinguish
them from real-world images. Furthermore, the realism of
renderings is limited by the expressiveness of the BRDF

model used during rendering, so other datasets like the
synthetic renderings of measured Adobe Stock SVBRDFs
[XSHR18] face the same limitation.

There are other image-based reflectance models like Bidi-
rectional Texture Functions (BTFs) [DGNK97] which do not
suffer from these limitations. Instead of BRDFs, they are
composed of apparent BRDFs (ABRDFs), which contain
arbitrarily complex reflectance, including interereflections
and shadowing effects. Though they are available in several
rich material databases [SSK03, RSK10, HM12, WGK14,
FKH∗18], BTFs are not suitable for arbitrarily glossy mate-
rials, as their acquisition, storage, post-processing and ren-
dering grow more expensive with high glossiness due to the
necessary denser angular sampling to faithfully capture all
highlights.

The images in our dataset contain reflectance measure-
ments of real-world materials. They are obtained with the
commercial TAC7 appearance scanner, manufactured by X-
Rite [XR18]. Similar to BTFs, our images contain ABRDFs,
but with per pixel varying angular sampling. This avoids
the error-prone step of resampling the measurement images.
Our benchmark extends the existing UBOFAB19 dataset
[MHRK19] of TAC7 fabric scans.

3. Dataset

In this section we describe the details of our material dataset.
It consists of 56 new fabric materials that are selected from
a wide range of fabric categories, ranging from brocades to
velvet, see Fig. 1.

The TAC7 appearance scanner rotates material samples on
a turntable under four fixed panchromatic cameras, 29 fixed
white point-like LED light sources, as well as a strip-like
light source (called linear light source, LLS) that is mounted
on an arm and can be rotated to arbitrary inclination angles.
Optionally, samples can be placed on a back-lit diffuser plate
for translucency measurements. The surface geometry is ob-
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tained via structured light measurements from a single pro-
jector. Color information is captured by rotating filter wheels
in front of five of the LEDs. Measurements are performed
by rotating the turntable to one of five orientations (0, 45,
90, 135 and 180 degrees). All four cameras then capture ex-
posure series for each individual light source (and optionally
color filter), including the structured light projector. Depend-
ing on a user-selected glossiness preset, the LLS is rotated
with a step size of 6 (low gloss), 3 or 0.5 degrees (high gloss)
for each turntable orientation. The total number of measured
images (excluding structured light and back-lit images) per
material are 388 point-lit, out of which 100 are color images,
as well as respectively 280, 560 or 3300 line-lit images for
the low-, medium- or high-gloss presets.

All images are radiometrically calibrated, i.e. all camera
non-linearities are calibrated out of the data during HDR
combination. The same holds for illumination or camera ef-
fects like light falloff or lens vignetting, which are removed
via white-frame calibration. Color images are provided in
linear sRGB color space under equal energy illuminant E.

Confidence maps: During post-processing, per-pixel confi-
dence maps are calculated for each measurement image, in-
dicating geometric and radiometric uncertainties in the data:

wi = min(mi,max(0,〈ni, li〉 · 〈ni,vi〉)) ,

where the masking term mi = 0 indicates that pixel i is shad-
owed or occluded, otherwise mi ∈ [0,1] indicates potential
radiometric uncertainties (e.g. over-exposure remaining af-
ter HDR combination for extremely bright highlights). The
weights in unmasked regions are the product of the cosines
of the angles between light respectively view and the normal.
Thus, lower weights are assigned for grazing angles due to
increased geometrical uncertainties. This weighting scheme
is known from BRDF fitting [BSN16] or as part of a percep-
tual BRDF similarity metric [Rym18].

Holdout set: For each material, we select about 10% (40 im-
ages) of the point-lit images for a non-public test set, which
is reserved for evaluation of challenge submissions. The im-
ages are selected to cover a wide range of light and view
directions and are the same for each material.

4. Challenge

We pose the benchmark as a competition on the codalab plat-
form. Participants can upload their result images, which are
created by evaluating reflectance models, e.g. SVBRDFs, on
the directional sampling corresponding to the images in the
holdout set. The challenge is split into two branches:

Standard branch: The results are automatically compared
against the holdout images using the following image met-
rics: mean absolute deviation (MAD), mean square er-
ror (MSE), Structural Similarity Index (SSIM) [WBSS04],
HDR-VDP 2.2 [NMSC15], and for color images addition-
ally CIE ∆E2000 [CIE01]. These metrics all return error

maps, which are averaged over all pixels and, where avail-
able, over the color channels. Before computing the metrics,
we apply masks that effectively correspond to a binarized
version of the masking term mi from above, i.e. indicating
occluded or shadowed regionns in the images. The final met-
ric scores are obtained by averaging over the 40 images times
56 materials.

Weighted branch: Here we additionally apply the confi-
dence maps before computing the metrics, i.e. for a given
metric we compute the error score E as

E =
∑i M(w� I,w� Î)i

∑i wi
,

where � is the element-wise product, I is a reference image
from the holdout set and Î is the corresponding user recon-
struction. M(·) is the channel-averaged error map under the
selected metric, which is summed up over all pixels i and
normalized by the sum over all confidence map pixels wi.

We motivate this weighted branch as follows: The obser-
vations in the TAC7 images are ABRDFs, i.e. reflectance
overlaid by shadowing, masking and interreflections. Fur-
thermore, imperfections in the geometry reconstruction or
fuzzy structures like small fibers can cause interactions be-
tween neighboring pixels. The confidence maps encode such
uncertainties, at least to a limited degree. By weighing down
pixels with lower confidence, we intend to put more focus
on the actual reflectance behavior. In this way we hope to
better assess the quality of purely local reflectance models
like BRDFs that cannot represent shadows or other global
effects.

Baselines: We use single-lobe Ward SVBRDFs fit with the
Pantora software [XR20] as baseline model.

Duration: There is no time-limit for the challenge. We
plan to extend it by further branches covering new material
classes in the future.
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