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Abstract
Appearance acquisition is a challenging problem. Existing approaches require expensive hardware and acquisi-
tion times are long. Alternative “in-the-wild” few-shot approaches provide a limited reconstruction quality. Fur-
thermore, there is a fundamental tradeoff between spatial resolution and the physical sample dimensions that can
be captured in one measurement. In this paper, we investigate how neural texture synthesis and neural style trans-
fer approaches can be applied to generate new materials with high spatial resolution from high quality SVBRDF
measurements. We perform our experiments on a new database of measured SVBRDFs.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

Capturing the appearance of real surfaces requires scan-
ning in the spatial and the bi-angular domain of light and
view directions. As the reflectance of most materials shows
high-dynamic-range properties, this is an involved process
that requires carefully calibrated cameras and light sources.
There are commercial devices available [XR18], but at a
high cost. Recent trends show an application of deep learn-
ing for tackling the severely ill-posed problem of few-shot
reflectance acquisition [YLD∗18,DAD∗18,LXR∗18]. How-
ever, these approaches are limited in model complexity and
general reconstruction quality. Merzbach et al. [MHRK19]
predict high quality complex SVBRDF parameters, but they
still require dense, calibrated inputs. For our approach we
rely on an existing corpus of high quality SVBRDFs, e.g.
the publicly available fabric samples in the Bonn Fabric
SVBRDF dataset† [MHRK19]. We adapt two deep-learning-
based methods, the texture synthesis method of Zhou et
al. [ZZB∗18] and the Neural Style Transfer by Gatys et
al. [GEB15b] to SVBRDF materials from this database. Our
work has the following contributions

• example-based synthesis of higher-resolution SVBRDFs
of material samples with limited spatial resolution;
• appearance transfer of existing to new target materials;
• re-use of existing RGB-pre-trained CNN features without

the need for costly re-training on materials.

† https://cg.cs.uni-bonn.de/svbrdfs/

2. Related Work

Neural style transfer and neural texture synthesis are the two
branches of works underlying our paper. Example-based tex-
ture synthesis deals with the problem of creating spatially
enlarged instances of small exemplars of a texture. During
style transfer the artistic style of an input image is transferred
to the semantic structures of a content image by optimizing
a style loss. Texture synthesis and style transfer are closely
related. An extensive overview of existing neural style trans-
fer and neural texture synthesis approaches is provided by
Jing et al. [JYF∗19]. Gatys et al. were the first who proposed
a deep learning approach for texture modelling [GEB15a]
and extended their ideas in a subsequent work to the transfer
of style of paintings to other “content” images [GEB15b].
These approaches work by passing a style image through a
pre-trained convolutional neural network (CNN) and com-
puting Gramian matrices on the features of some of the con-
volutional layers. To produce a new instance of a style im-
age applied to an additional provided content image, an op-
timization is run over the output image, which is initialized
with noise. The optimization tries to progressively minimize
the style loss that enforces similar Gram matrices between
style and output images, and a content loss that enforces sim-
ilar features on another subset of the CNN layers between
output and content image. In a more recent work, Zhou et
al. [ZZB∗18] achieve state of the art texture synthesis results
using a generative adversarial network (GAN) in combina-
tion with a style loss.
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Figure 1: Example material maps from the Bonn Fabric
SVBRDF dataset. Base and highlight colors are respectively
defined by diffuse (ad) and specular (as) albedos, the glossi-
ness by the roughness parameters σx,σy (displayed in R and
G channels), displacement (H) and shading normal ns en-
code fine-scale surface variations, and the anisotropy angle
α (color-coded) defines the dominant anisotropy direction.

All of these methods work exclusively on RGB images.
This is because they re-use CNN models pre-trained on
large-scale image datasets. Since our material representa-
tions contain more then 3 channels, we cannot simply feed
them as input to the existing models. Naïve splitting into 3-
channel images which are fed individually will produce un-
correlated results that cannot simply be concatenated. We
therefore need to adapt these models to our special multi-
channel inputs, ideally without having to train the underlying
CNNs from scratch. The latter would pose very challenging
because of a lack of training data.

Material Model: We briefly describe the SVBRDF inputs
that we are processing. The database we use for our experi-
ments contains fabric samples represented using the Geisler-
Moroder variant [GMD10] of the anistropic Ward BRDF
[W∗92], extended by a Fresnel term based on the Schlick
approximation [Sch94]. For a detailed description of model
the reader is referred to the original works or Merzbach et
al. [MHRK19]. The model parameters, represented in indi-
vidual texture maps to allow spatial variations across the sur-
face, are shown in Fig. 1.

3. Neural SVBRDF Synthesis

Zhou et al. [ZZB∗18] introduce an example-based texture
synthesis that – contrary to many previous works – allows to
generate textures with non-stationary characteristics. Their
results are very appealing and motivate the application to
the fabric SVBRDFs in our database, many of which show
exactly these properties. As it is designed for RGB textures
only, we have to adapt the method in the following ways: We
change the network architecture to allow for more than the
3 RGB channels as inputs. This change is straightforward
except for the computation of the style loss. The underly-
ing VGG network [SZ14] is pretrained on RGB images only
and cannot simply be replaced by an equivalent architecture
with more input channels. We solve this problem by split-
ting the SVBRDFs into m 3-channel textures (see below),
which we can directly pass through VGG-net. The result-
ing feature maps are then concatenated along the feature-
dimension. Finally, the Gram matrices can be calculated in
the same principle as before, only that ours are m times big-

ger. Accordingly, we have to adjust the normalization weight
for the style loss to account for the additional factor of m2.

We apply the following mappings to our input to facilitate
learning: The lobe parameters σx,σy are highly non-linear,
so we transform them via σ

′ = log(σ+0.001)−log(0.001)
log(0.65)−log(0.001) . The

anisotropy angle α ∈ [− π/2,π/2] shows discontinuities when
it wraps around, which causes high contrast in the parameter
map, when in reality the observed effect on the reflectance is
only very subtle. We therefore transform α to a 2D represen-
tation α 7→ {sin(2α),cos(2α)}. After these transformations
the SVBRDFs are represented with 14 channel textures. We
furthermore increase the training efficiency by normalizing
the different modalities in the parameter maps. We empiri-
cally found that a channel-wise normalization with the 0.1-th
and 99.9-th percentiles provides the best results.

We split the 14 channels of the mapped parameters into
m = 8 separate RGB images by grouping semantically re-
lated parameters, repeating some of them to obtain 3-channel
textures (ad , as, nd , 3×σx, 3×σy, 3×sin(2α), 3×cos(2α),
3×H). We also experimented with m = 6 maps by respec-
tively concatenating the lobe and anisotropy parameters but
obtained slightly better results with the above version.

4. Neural Appearance Transfer

Our adaption of the texture synthesis method to SVBRDFs
provides good results. However, in most cases it is desir-
able to have more control over the synthesized materials.
Inspired by the texture transfer experiments presented by
Zhou et al. we also investigate neural style transfer meth-
ods on SVBRDFs. Zhou’s texture transfer experiments pro-
vide promising results. However, we found it difficult repro-
ducing similar results with our adapted implementation on
materials. Furthermore, the method has a significant training
overhead of several hours for each material.

So instead we focused on image optimization based neu-
ral style transfer methods. These methods achieve, in com-
parison to model optimization based methods, more appeal-
ing results [JYF∗19]. Furthermore, they require much lower
training effort, as there is no GAN component as in Zhou’s
network that drives up the training costs. We therefore select
the neural style transfer method by Gatys et al. [GEB15b]
because of its simplicity and adapt it to allow for appear-
ance transfer. When trying to extend it to our 14 channel
SVBRDF representation, we face the same problem as with
the texture synthesis method of Zhou et al. [ZZB∗18]. We
can thus apply the same strategy of grouping semantically
related texture maps into 3-channel images, which we indi-
vidually pass through the VGG-net, and concatenate the re-
sulting feature maps to compute the Gram matrices. Similar
changes allow computing the content loss term on the entire
content-SVBRDF.

Not all of the SVBRDF parameters are equally “impor-
tant” for the resulting appearance. The variations stored in
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the displacement map have a much less noticeable impact on
a rendering than e.g. the albedo maps. Similarly, even with
our parameter mappings and layer-wise normalization, some
features are less prominent and cause different degrees of
feature activations in the CNNs. Some parameters are much
less correlated with the others, most noticeably the displace-
ments H. We therefore introduce a weighting scheme into
our style loss calculation, which applies different weights to
the different parameter types. It emphasizes the albedo maps
and decreases the weight for the displacement map using a
weight vector w = [1.5,2,1,1,1,0.05]. This vector also re-
quires normalization in order not to shift the style-content
loss balance. The normalization is given by m/||w||1.

5. Results

Appearance synthesis: In the following we first present re-
sults for appearance synthesis based on our adaption of Zhou
et al. [ZZB∗18] on a set of various materials, see Figs. 2
and 3. We generally obtain visually appealing results after
around 50000 training iterations.

originput synth

Figure 2: Result renderings of our texture synthesis.
Columns from left to right show: input: low resolution crop,
orig: original uncropped material with input patch in the
center, synth: synthesized high resolution material.

Appearance transfer: Next, we show transfered appear-
ance based on our adapted neural style transfer method
[GEB15b]. Figs. 4 shows renderings of style SVBRDFs
transfered according to content SVBRDFs.

ad orig ad synth as orig as synth σx ,σy orig σx ,σy synth

σx ,σy orig σx ,σy synth ns orig ns synth α orig α synth

Figure 3: Parameter maps of original and synthesized ma-
terials. These results correspond to the renderings in Fig. 2.

6. Conclusion

In this paper we first apply the ideas of the approach of Zhou
et al. [ZZB∗18] to the problem of synthesis of high resolu-
tions SVBRDFs of material samples. The synthesized tex-
tures with increased resolution look appealing and perceptu-
ally similar (including all reflectance properties) to the orig-
inal materials, while preserving global structures. However,
the resolution can only be extended by the fixed factor be-
tween low and high resolution training samples. Second, we
extend the approach of Gatys et al. [GEB15b] to the task
of appearance transfer of fabrics. Though our implementa-
tion is not yet universally applicable to all combinations of
style and content materials, we still achieve very promising
results.

We plan to further investigate improved weighting
schemes to stabilize the behavior in a future work. Further-
more, the next obvious extension is to relax the need for a
content SVBRDF and the approach to handle arbitrary RGB
content images.
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7. Appendix

Addition of Deep Correlation loss:

In another recent work, Sendik and Cohen-Or introduced
a Deep Correlation loss [SCO17] for their neural texture syn-
thesis method. It enables a better synthesis of textures that
show regular structures. Given that this property applies to
many fabrics, we investigate the impact of adding this loss
term to the synthesis method of Zhou et al. [ZZB∗18]. We
thus augment their total loss function presented by an addi-
tional term LDCorr that is computed according to the Deep
Correlation loss [SCO17]:

Ltotal = Ladv +λ1LL1 +λ2Lstyle +λ3LDCorr, (1)

where Ladv is an adversarial loss [GPAM∗14], LL1 a simple
L1 loss, andLstyle a style loss computed on VGG-19 [SZ14].

Fig. 5 shows the effects of the addition of the Deep Cor-
relation loss term, as well the difference when it completely
replaces the style loss. Both when augmenting and replac-
ing the style loss, we observe qualitatively comparable re-
sults. Since the calcuation of the correlation matrices is quite
costly, the training performance drops by a factor of 5. We
conclude that Deep Correlation loss poses an interesting al-
ternative to the style loss, however, the performance penal-
ties outweigh the potential benefits.
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Figure 5: Ablation study for the effect of an additional Deep Correlations term (see Eq. 1). Top row: input, uncropped material,
synthesis with style loss only, synthesis with style and deep correlation loss; bottom row (pink fabric): further synthesis results
with style loss only, with style and deep correlation loss, and with deep correlation loss only; bottom right (green-blue fabric):
typical artifacts observed when using deep correlation loss.
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