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Abstract

Real-time reflectance reconstruction under uncontrolled
illumination conditions is well-known to be a challenging
task due to the complex interplay of scene geometry, surface
reflectance and illumination. Nonetheless, recent works
succeed in recovering both unknown reflectance and illu-
mination in an uncontrolled setting. However, they are ei-
ther limited regarding the scene complexity (single objects
/ homogeneous materials) or are not suitable for real-time
applications. Our proposed method enables the recovery
of heterogeneous surface reflectance (multiple objects and
spatially varying materials) in complex scenes at real-time
frame rates. We achieve this goal in the following way:
First, we perform a 3D scene reconstruction from an in-
put RGB-D stream in real-time. We then use a deep learn-
ing based method to estimate Ward BRDF parameters from
observations gathered from individual segmented scene ob-
jects. Subsequently we refine these reflectance parameters
to allow for spatial variations across the object surfaces.
We evaluate our method on synthetic scenes and success-
fully apply it to real-world data.

1. Introduction

The digitization of scenes belongs to the classical com-
puter vision tasks with numerous applications in entertain-
ment, advertisement, cultural heritage as well as virtual and
augmented reality. However, achieving realistic models re-
lies on the accurate capture of the underlying properties
such as geometry and reflectance characteristics which is
complicated by the fact that only the interplay between sur-
face geometry, material-specific reflectance characteristics
and illumination conditions can be directly measured. Ad-
ditional real-time constraints further complicate this task.

Regarding the separate real-time reconstruction of 3D
scene geometry, impressive results have been reported with
the aid of consumer RGB-D sensors such as the Kinect [31,

5, 43, 44, 12, 13, 6]. The decoupling of reflectance and
illumination characteristics, however, remains a highly ill-
posed challenge due to its severely under-constrained na-
ture. As a result, many real-time reconstruction approaches
rely on strong simplifications, such as using simple color
textures to represent surface appearance. However, repre-
senting a surface point using a single color value is not
sufficient. One needs to take into account that color ob-
servations incrementally captured for it may strongly vary
due to view- and illumination dependent shadows or high-
frequency illumination characteristics. Otherwise, such ef-
fects would be stored in the surface texture, which would
lead to inconsistencies for scene relighting. To improve the
quality of the reflectance reconstruction by separating the
aforementioned effects in real-time, existing works exploit
intrinsic image decomposition for (diffuse) albedo estima-
tion [16, 11, 29, 26, 40]. These techniques achieve real-time
capabilities at a reduced reconstruction accuracy. In con-
trast, estimating BRDF models together with the surround-
ing illumination with inverse rendering frameworks yields
more accurate reconstructions that also take specular re-
flectance into account. Inverse rendering approaches utilize
alternating optimizations of reflectance and illumination
based on statistical priors [39, 22, 21, 3, 47, 23, 24, 37, 2].
However, the computational burden of these approaches
prevents real-time performance. Other approaches have
recently demonstrated impressive real-time reconstructions
by leveraging markers and mirror spheres [48] or by using
the potential of deep learning, even in the absence of HDR
inputs [17, 28]. However, remaining limitations include the
restriction of these BRDF estimation frameworks to single
objects with homogeneous reflectance characteristics.

In this paper, we address these limitations by propos-
ing a novel multi-material reflectance reconstruction frame-
work for large-scale scenes with spatially varying surface
characteristics under uncontrolled indoor illumination. This
implies taking into account near-field illumination charac-
teristics and extending previous frameworks [17, 28] to
handle inhomogeneous reflectance characteristics as well
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Figure 1. Overview of the proposed real-time multi-material acquisition approach.

as multiple materials in large scenarios in real-time. For
this purpose, we capture near-field illumination character-
istics, initially assuming that the illumination conditions in
indoor scenarios remain constant during capture. In addi-
tion, the use of scene segmentation allows to associate the
individual reflectance measurements to segments of homo-
geneous reflectance characteristics, so that within-segment
observations can be exploited for the estimation of local
surface reflectance behavior. In a final step, we estimate
multi-material reflectance characteristics in terms of spa-
tially varying parameters of the Ward BRDF based on the
collected measurements utilizing the HemiCNN [17] with
a subsequent refinement of diffuse albedo characteristics to
allow handling spatially varying characteristics. Our eval-
uation demonstrates the potential of our approach in the
scope of synthetic and real-world examples.

2. Related Work
Early work on separating reflectance and illumination in-

cludes in particular the intrinsic image decomposition [4],
where an input image is decomposed into the product of a
shading layer and a reflectance layer, and its numerous im-
provements since that time. However, the underlying repre-
sentation based on two images is disadvantageous as the re-
flectance layer only represents the diffuse component while
the specular component is stored together with the lighting
in the shading layer.

Assuming known geometry, Haber et al. [10] and Diaz
and Sturm [7] estimate Lambertian reflectance and illu-
mination characteristics from images taken under uncon-
trolled conditions. Barron and Malik [3] estimate shape,
reflectance, and illumination from a single image. Further-
more, using video frames as input, Dong et al. [8] exploit
the knowledge regarding surface geometry of a rotating ob-

ject to estimate spatially varying reflectance behavior and
Palma et al. [33] captured SVBRFs while surrounding the
object and approximating the environment with a few dom-
ination point light sources. In contrast, Wu and Zhou [48]
applied the Kinect sensor as an active reflectometer in the
IR spectrum and separately captured the illumination in the
scene, which allows scanning the object geometry and ap-
pearance within several minutes while providing interac-
tive visual feedback. Similarly, Knecht et al. [18] also ex-
plored the Kinect to estimate reflectance characteristics at
interactive rates. In further work [47], color and depth im-
ages captured under unknown illumination serve as input
to an offline joint optimization of camera poses, materials,
illumination, and surface normals. On-the-fly reflectance
estimation at interactive rates for objects exhibiting a ho-
mogeneous smooth surface reflectance behavior has been
achieved by Kim et al. [17] based on a learned model trained
on synthetic data. Solely considering flat material samples,
Aittala et al. [1] exploit self-similarities in the surface re-
flectance behavior to fit spatially-varying BRDFs over a de-
tailed normal map based on a flash/no-flash image pair de-
picting a flat material sample. Furthermore, Li et al. [19]
infer BRDF characteristics for single images based on self-
augmented convolutional neural networks.

Instead of assuming known surface geometry, several
techniques [36, 9, 20, 25] use implicit shape priors and,
hence, are tailored to objects used during the training.

Lombardi and Nishino [21, 24] employ priors for the re-
flectance model to extrapolate non-observed measurements
in combination with illumination priors to jointly optimize
for the reflectance and illumination characteristics. In sub-
sequent work [23], this has been further improved to also
handle complex scene appearance beyond single isolated
objects. In all these approaches the considered objects are



assumed to exhibit a smooth, homogeneous reflectance be-
havior and real-time performance has not been reached. An-
other offline estimation approach for illumination and ma-
terial properties tailored to in the wild conditions has been
proposed by Richter-Trummer et al. [38].

The recent work of Meka et al. [27] has been demon-
strated to allow for live reflectance estimation from single
images without assuming the aforementioned priors. This
has been achieved based on the coupling of various encoder-
decoder architectures to derive object segmentation, as well
as more detailed reflectance information. However, the ap-
proach is tailored to the capture of single objects with ho-
mogeneous reflectance characteristics.

3. Multi-material Reflectance Estimation in
Large Scenes from RGB-D Sequences

As illustrated in Figure 1, our framework for real-time
multi-material reflectance reconstruction takes inputs in
terms of RGB-D streams from commodity depth sensors
such as the Microsoft Kinect or respective RGB-D sensors
in smartphones. In an initial step, we recover the illumina-
tion characteristics in the scene (see Section 3.2). Thereby,
we avoid the need for special calibration targets such as
chrome spheres as used by Wu and Zhou [48]. Based on
the initial illumination reconstruction, we then perform a
real-time reflectance reconstruction by gathering view- and
illumination-dependent observations for each surface point
(Section 3.4), segmenting the scene into different objects
(Section 3.5), and estimating material reflectance character-
istics in terms of specular (Section 3.6) and diffuse albedo
(Section 3.7). In Section 3.1, we first review the underlying
reflectance representation and subsequently provide more
details regarding the major components of our framework.

3.1. Image Formation and Reflectance Models

Before addressing the inverse rendering problem in
terms of inferring surface reflectance characteristics, we
briefly focus on the underlying image formation process
that describes the light exchange at surfaces as described
by the rendering equation [15]:

Lo(x, ωo) = Le(x, ωo)

+

∫

Hi

f∗(ωi, x, ωo)Li(x, ωi) cos θi dωi. (1)

The radiance Lo leaving some point x into direction ωo is
composed of the radiance Le emitted from that point into
direction ωo, and the integral over the radiance Li, incident
at x from directions ωi in the domain Hi, that gets reflected
into direction ωo according to a material-specific reflectance
model f∗, weighted by the cosine of the angle between ωi
and the surface normal. Assuming that an object does not
emit light on its own, we can ignore Le.

In order to capture surface appearance, we have to re-
cover the underlying reflectance, which is a severely ill-
posed task difficult to solve in real-time. Therefore, fol-
lowing previous work, we assume that reflectance can
be sufficiently described with parametric BRDF models
[23, 47, 17]. Similar to Kim et al. [17], we use the Ward
BRDF model [42]

fBRDF (ωi, x, ωo) =
κd(x)

π
+
κs(x)

N
· eγ , (2)

N = 4πα2
√
cos θi · cos θo, (3)

γ = − tan θh
2

α2
, (4)

as it can be seen as a trade-off between simplicity and the
capability to represent a wide range of materials, and has
been used in the domain of material perception [34, 46].
Here, κd denotes the diffuse and κs the specular albedo.
The parameter α describes the surface roughness. Another
common assumption is that each scene object consists of a
single homogeneous material, such that it can be sufficiently
described by the 7-dimensional Ward parameters. However,
since very few real-world objects follow this assumption,
we relax this assumption by performing a spatially varying
albedo refinement. Finally, we ignore all indirect illumina-
tion effects like self-shadowing or interreflections.

3.2. Lighting Estimation

Knowledge of the illumination conditions in the scene
facilitates the estimation of surface reflectance behavior and
has been addressed e.g. by using special calibration tar-
gets, such as mirroring spheres, in front of the moving cam-
era [48]. As we focus on indoor scenarios, we have to
capture near-field illumination. Since time-of-flight sen-
sors (e.g. the Microsoft Kinect v2) are not able to measure
depth for mirror-like surfaces, we instead record illumina-
tion characteristics using a separate RGB-D image sequence
capturing the light sources by direct observation. During
this first recording, the sensor is configured to use a low ex-
posure in order to achieve a clear separation of light sources
from the remaining scene contents in the RGB images. Note
that we do not need an additional RGB-D sensor as both
image sequences can be recorded sequentially. We back
project pixels of the RGB images with a luminance above a
given threshold according to the corresponding depth data
and apply a simple spatial mean-shift clustering for each
frame individually. Fusing the resulting per image point
light candidates over the whole sequence yields the final
illumination configuration. Alternatively, voting-based ap-
proaches could be used [45, 33].

3.3. Geometry Reconstruction

Both the estimation of near-field illumination and re-
flectance rely on knowledge of the surrounding scene ge-



ometry. We use the VoxelHashing 3D reconstruction frame-
work [32, 14] that allows real-time reconstruction of large
scenes. It relies on an implicit voxel-based surface represen-
tation adapted to the underlying scene geometry. Instead of
allocating voxels for the entire scene volume, a sparse set of
voxel blocks managed by spatial hashing is used.

3.4. Local Collection of Reflectance Observations

The inference of surface reflectance characteristics re-
lies on collecting local observations of surface appearance
at each surface point under various viewing configurations
per voxel and constant illumination conditions. Therefore,
an observation is given as a pair of an RGB color value and a
direction from which it has been observed. For every voxel
in the hash table we determine the corresponding pixel in
the depth image. By comparing the depth value with the
distance between voxel and camera, we check whether the
voxel is corresponding to some pixel in the RGB image or
not. If the two values are sufficiently close, we sample the
color from the RGB image and store it together with the
voxel-to-camera direction as one observation. Observations
that are too far from the surface or occluded are discarded.

Similar to the VoxelHashing framework, we store all
those observations in a separate large observations pool in
GPU memory and access them through a hash table which
maps voxel coordinates to a list of observations. Hold-
ing the observations in GPU memory allows for efficient
highly parallel acquisition and processing. The GPU mem-
ory, however, is already in high demand for the geometry
reconstruction itself and the machine learning framework
running the CNN (Section 3.6). Due to the large number of
voxels in the scene and input image sequences that usually
contain hundreds of frames, the memory consumption is a
very limiting factor for this step. In order to keep the mem-
ory, as well as the computational requirements tractable, we
introduce some optimizations:

First, we limit the number of stored observations for a
single voxel to m, while ensuring that the most important
reflectance characteristic are still captured. Therefore, we
approximate a uniform sampling over the hemisphere in
normal direction by discarding one of the two most sim-
ilar observations when exceeding the limit after storing a
new one. Experimentally we determine m = 30 to be a rea-
sonable number of stored observations. This solution rep-
resents a trade-off between a low chance of missing valu-
able specularity information and computational complexity.
Since this is a real-time pipeline, we set the focus on perfor-
mance.

As a second optimization, we work on a coarser voxel
grid for anything regarding the reflectance observations. In-
stead of the usual 83 voxels per voxel block used for the
geometry reconstruction, we only use 23 or 43 voxels for a
voxel block of the same spatial dimensions in this step. This

downsampling is also the reason for using a separate voxel
pool and hash table instead of directly integrating the obser-
vations in the geometry reconstruction voxel data structure.
Separating the reflectance from the geometric observations
additionally allows decoupling the geometry reconstruction
from the material estimation framework.

3.5. Segmentation

Estimating multi-material reflectance is complicated by
the fact that different materials may seem similar under cer-
tain viewing and illumination configurations. Instead of
performing a color-based segmentation that may not dis-
tinguish material clusters correctly and connect distant dis-
similar regions, we assume that the scene contains multiple
objects with locally homogeneous materials. We therefore
apply the depth-based segmentation by Tateno et al. [41]. It
is based on the assumption that most objects have convex
shapes, and thus tend to be separated by concave bound-
ary regions in the depth maps. The concave regions are
computed using the relative normal orientations from the
depth maps and are segmented using connected component
analysis. In addition, we exploit the temporal coherence of
such regions over image sequences to make the segmenta-
tion consistent over time.

For further processing we need to be able to randomly
sample voxels of a specific segment. In order to do this, we
allocate a ring buffer of fixed size per material class, which
is filled with voxel references utilizing the GPU.

3.6. Specular Material Parameter Estimation

For the material estimation, we assume every extracted
segment to correspond to a region with homogeneous mate-
rial characteristics. We thus have to predict one set of ma-
terial parameters for the voxels assigned to a specific seg-
ment. For this purpose, we use the HemiCNN [17] to esti-
mate specular albedo κs and the Ward roughness parameter
α. While we use κs and α as provided by the HemiCNN,
we use a novel albedo refinement technique to compute the
diffuse albedo κd to increase robustness against violations
of our homogeneity assumption, see Section 3.7.

In a first step of the estimation process, for every seg-
ment, we loop over its ring buffer containing the segment’s
voxels and randomly sample 25 of them. Per segment, we
use those sampled voxels to create so called HemiImages
from their reflectance observations. The observations’ di-
rections are rotated such that the z-axis is aligned with the
surface normal, which is stored together with the reflectance
observations. This results in the observations all being con-
tained by the hemisphere in positive z direction. All direc-
tions are now projected onto the x-y-plane such that they
are contained in the unit disk around the origin. To better
preserve information under flat angles, we use a parabolic
mapping instead of the orthogonal projection suggested by



Kim et al. [17]. The disk containing the projected obser-
vation directions is transformed to the range [0; 14]2. We
subsequently use nearest neighbor interpolation on the ob-
served colors to fill the pixel grid of 15 × 15 images. The
created HemiImages are used as the input for HemiCNN.

We use a variation of the RMSE2 [17] as loss, i.e.

E(w, ŵ) = λd

∥∥∥∥∥∥



λlL− λlL̂
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d− d̂




∥∥∥∥∥∥∥∥

2

2

(5)

with w = (L, a, b, cr, cg, cb, d) being the ground truth Ward
parameters in a perceptually linear representation [35] and
ŵ analogously being the estimated parameters. For lower
values for λd and λl the network focuses more on the
specular estimation. Therefore, different than Kim et al.
(λd = λl = 1), we use λd = 0.1 and λl = 0.3.

Since we estimate the scene’s materials in real time, we
have to run the material estimation step each frame. In order
to reduce the susceptibility to noise in the individual mate-
rial estimates, we fuse the material parameters over time.

Inspired by the truncated signed distance function
(TSDF) update formula used in KinectFusion [30], we use
an average over the materials for the single frames to tempo-
rally fuse local material parameter estimates, with a higher
weight for current observations. However, instead of divid-
ing by the number of material predictions after summing
them up, we clamp the divisor (in our pipeline to 60).

3.7. Albedo Refinement

Applying the HemiCNN in a per-segment manner yields
homogeneous diffuse and specular characteristics per seg-
ment. In order to relax this and address inhomogeneous re-
flectance characteristics, we refine the diffuse albedo while
keeping the other modalities fixed, thereby allowing spa-
tially varying surface appearance according to the observa-
tions in the voxel grid resolution.

Based on Equations 1 and 2, the k-th reflectance obser-
vation for one voxel can be expressed as

Bk =
∑

l

(
κd
π

+
κs
Nl

· eγl
)
· Ll · cos θi,l, (6)

whereNl, γl and θi,l are respectively the variablesN , γ and
θi for light source l. Solving for κd yields

κd = π ·
Bk − κs ·

∑
l

1
Nl

· eγl · Ll · cos θi,l∑
l Ll · cos θi,l

. (7)

For every frame we use the observations per voxel to re-
calculate the respective per-voxel diffuse albedo κd. Due
to the approximately uniform sampling of the observations’
directions, we achieve a high degree of temporal coherence

by simply averaging the single estimates. The artifacts in-
troduced by the rather low resolution of the observation
voxel grid are reduced by applying trilinear interpolation.

4. Evaluation

After providing implementation details, we evaluate our
technique for both synthetic and real-world scenarios.

4.1. Implementation Details

We performed all experiments using an Intel Core i7-
4930K with 32 GB RAM and an Nvidia GeForce GTX 1080
with 8 GB VRAM. Following standard indoor 3D recon-
struction approaches, we use a 3D space discretization with
a resolution of 5 mm for the reconstructed model. Further-
more, we use grid resolutions of 2 cm, and 1 cm for the
reflectance observations.

The data we use for training the HemiCNN is based on
the SynBRDF [17] dataset. It contains 4432 RGB-D image
sequences with 100 synthetic images per sequence, which
show a single Ward-shaded object from different perspec-
tives, illuminated using various environment maps. Due to
its synthetic character, we know the ground truth Ward ma-
terial parameters. The scenes are divided into 3574 training,
424 validation, and 434 test scenes. We use those images to-
gether with our previously described pipeline to create 500
HemiImages per sequence. Afterwards we sample 200 dif-
ferent random sets of 25 HemiImages to create 886400 la-
beled examples, on which we train our network. We train
the HemiCNN in TensorFlow with the Adam optimizer, us-
ing a learning rate of 0.0001 and 150k batches, containing
32 examples each.

4.2. Synthetic Data

For synthetic data, we have direct access to the ground
truth camera trajectory, segmentation, and material param-
eters. Our test scenarios consist of objects in a virtual scene
and a camera moving around them in an oscillating manner.
To generate such scenes, we utilize an OpenGL rasteriza-
tion engine.

The benefits of our improved HemiCNN are shown in
Figure 2. Using our modified HemiCNN allows to recon-
struct the specular material characteristics more precisely
(e.g. on the yellow bunny). Furthermore, our albedo re-
finement integrated into the material reconstruction pipeline
also allows to reconstruct spatially varying diffuse albe-
dos. A qualitative evaluation in Figure 3 shows that shad-
ing effects are mostly avoided in the refined diffuse albedo
maps. Furthermore, the re-renderings with and without
albedo refinement match the input RGB images closely for
the cube sequence, where the individual objects are homo-
geneous. Figure 4 compares our reconstructed parameters
to the ground truth on a synthetic scene.
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bunnies
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Figure 2. Comparison of our approach with the unmodified HemiCNN [17] on the cubes, bunnies, and office scenes. The first column shows
the input RGB images, while the other columns show re-rendered RGB images reconstructed by the unmodified HemiCNN, HemiCNN
with our proposed modifications, and our complete pipeline respectively. The reconstructions on the synthetic scenes use ground truth
segmentation in order to focus the comparison on the material estimation aspect.

Input RGB Ground Truth κd Refined κd Refined Re-rendering HemiCNN Re-rendering

cubes

bunnies

Figure 3. Results for two synthetic datasets: Image of the input sequence, ground truth diffuse albedo, refined diffuse albedo, scene re-
rendering using all of the estimated Ward parameters and scene re-rendering using the diffuse albedo output of the HemiCNN directly
(from left to right). In both cases, the distance between the scene’s center and the camera is 4 m. The cubes have an edge length of 0.4 m
and the bunnies have a height of 1.5 m.

The albedo refinement is particularly favorable for sce-
narios where the assumption of homogeneous materials is
violated. Oscillations are induced by different viewpoints
in the images. Additionally, the results in Figure 5 illustrate
the influence of the albedo refinement for objects with spa-
tially varying reflectance behavior. Further results regarding
various error metrics are shown in Table 1.

4.3. Real-world Data

To demonstrate the performance of our technique on
real-world data, we captured an indoor scene that contains
a multitude of objects with different reflectance characteris-
tics. For the RGB-D capturing of real-world scenes, we use
the Microsoft Kinect v2 that delivers images with a resolu-
tion of 512× 424 pixels at 30Hz.
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Figure 4. Quantitative evaluation over time (1000 frames) by comparison with ground truth BRDF parameters on a synthetic test scene over
multiple objects. The first three rows show diffuse κd and specular albedo κs, as well as roughness parameter α. Plotted in bold are the
ground truth BRDF parameters that are constant for each object (to avoid clutter, we plot only the red channel for κd and κs), the bottom
row shows the red component of the rendered RGB color, where the bold line again represents ground truth. The thinner and lighter plots
show our reconstructions. The gray plots show refined parameters. Gaps in the plots are caused by occlusions.
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Figure 5. Quantitative evaluation over time (1000 frames) for the bunny dataset: L1 errors (normalized over object region) of diffuse albedo
(first row), specular albedo (second row), Ward roughness α, and final reconstruction error ∆RGB for the individual objects. The gray
plots show the errors resulting from the refined model. Gaps in the plots are caused by occlusions.

∆L1
∆L2

PSNR SSIM
S1 S2 S3 S4 avg S1 S2 S3 S4 avg S1 S2 S3 S4 avg S1 S2 S3 S4 avg

κd 0.17 0.09 0.09 0.09 0.11 0.18 0.13 0.12 0.11 0.13 13.36 19.23 20.80 19.94 18.33 0.89 0.95 0.96 0.93 0.93
κd,ref 0.03 0.05 0.05 0.07 0.05 0.06 0.10 0.09 0.10 0.09 23.57 21.65 22.82 20.75 22.20 0.94 0.97 0.96 0.93 0.95
κs 0.02 0.00 0.04 0.09 0.04 0.04 0.01 0.06 0.11 0.05 26.02 45.31 25.41 18.55 28.82 0.97 1.00 0.98 0.97 0.98
α 0.06 0.03 0.05 0.02 0.04 0.07 0.06 0.06 0.04 0.06 17.91 22.45 22.84 25.81 22.25 0.96 0.98 0.98 0.98 0.98
RGB 0.20 0.13 0.10 0.10 0.13 0.21 0.19 0.16 0.16 0.18 21.68 26.15 28.63 27.32 25.95 0.90 0.94 0.96 0.94 0.94
RGBref 0.08 0.07 0.08 0.09 0.08 0.15 0.14 0.15 0.15 0.15 25.16 28.83 28.96 27.48 27.61 0.92 0.94 0.97 0.95 0.95

Table 1. Different metric results averaged over the 1000 frames of the bunny dataset: mean absolute deviation (MAD, ∆L1 ), root mean
square error (RMSE, ∆L2 ), peak signal to noise ratio (PSNR), structural similarity index (SSIM). The individual metrics are shown
separately for the different scene objects (S1: floor, S2: yellow bunny, S3: teal bunny, S4: orange bunny), as well as averaged over the
entire scene. The errors are computed on the individual model parameters (κd, κs and α), as well as the re-renderings (RGB). The second
and the last row show the metrics based on the refined diffuse albedo (κd,ref) and corresponding re-renderings (RGBref). Highlighted in
bold are the respective better results under each metric, showing that our refinements produce consistent improvements.
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Figure 6. Results for a real-world office scene captured with the
Microsoft Kinect v2 sensor: RGB input, estimated diffuse albedo,
and Ward shaded re-rendering on three different frames.

Low Resolution High Resolution

κd

Re-rendering

Figure 7. Comparison of results using different resolutions for the
reflectance observations’ voxel grid: 2 cm (left) and 1 cm (right).

As demonstrated in Figure 6, highlights are separated
from the diffuse albedo, and the specular component is pre-
served in the reconstructed Ward parameters as illustrated
by the re-rendering. Furthermore, Figure 7 shows that the
reflectance observations’ voxel grid resolution has only a
minor effect on the re-renderings, albeit the difference be-
ing visible in the diffuse albedo maps.

4.4. Performance Evaluation

The timings needed by the individual components of our
framework are shown in Table 2 and Table 3. As can be
seen, our approach allows real-time material recovery on
all low resolution test scenarios, as well as on the simple
high resolution ones. Investigations about the α distribution
in the data, as well as additional results on synthetic and
real-world scenes are shown in the supplementary material.

Scene cubes bunnies office
Geometry Rec. 3.480 ms 5.865 ms 8.906 ms

Refl. Obs. Collection 0.701 ms 1.474 ms 1.624 ms
Segmentation 1.154 ms 1.944 ms 1.755 ms

Specular Mat. Est. 5.997 ms 6.582 ms 6.039 ms
Albedo Refinement 5.962 ms 9.158 ms 11.438 ms

Total 17.294 ms 25.023 ms 29.763 ms

Table 2. Performance of the whole pipeline on various scenes with
low (2 cm) voxel grid resolution for reflectance observations.

Scene cubes bunnies office
Geometry Rec. 3.397 ms 5.867 ms 8.997 ms

Refl. Obs. Collection 2.965 ms 8.535 ms 9.967 ms
Segmentation 1.136 ms 1.980 ms 1.756 ms

Specular Mat. Est. 5.978 ms 6.507 ms 5.820 ms
Albedo Refinement 10.442 ms 21.579 ms 28.254 ms

Total 23.919 ms 44.467 ms 54.794 ms

Table 3. Performance of the whole pipeline on various scenes with
high (1 cm) voxel grid resolution for reflectance observations.

4.5. Limitations and Future Work

Reconstructing scenes with high dynamic range (HDR)
leads to problems with overexposure since consumer-grade
RGB-D sensors like the Kinect typically only capture low
dynamic range (LDR) images. This limitation could be
tackled by augmenting the LDR inputs or reconstructing
HDR from LDR images captured under varying exposures.

The sampling of the stored observations could be
adapted to better match the object’s specularity for sparsly
observerd objects such as the chair and the wall in Figure 6.
Further improvements include the optimization of our cur-
rent implementation to allow refining the resolution of the
reflectance observations and improving the segmentation by
additionally considering albedo information.

5. Conclusion

In this paper, we presented a novel real-time multi-
material reflectance reconstruction framework for large-
scale scenes with spatially varying surface characteristics
under uncontrolled static near-field indoor illumination. Af-
ter an initial reconstruction of the near-field scene lighting,
the framework uses the combination of real-time 3D recon-
struction, scene segmentation and per-segment reflectance
estimation. As demonstrated, our technique preserves spec-
ular characteristics in the estimated material parameters and
additionally is capable of handling also spatially varying re-
flectance characteristics.
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