Solving Trigonometric Moment Problems for Fast Transient Imaging
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Figure 1: We use an AMCW lidar system to capture transient images at interactive frame rates. The shown scene is designed to provide
a challenging test case. A wall is lit directly and indirectly via two mirrors such that parts of it return light after three different times of
flight. Our customized AMCW lidar system captures all shown trigonometric moment images within 113ms. This is all data that enters our
closed-form reconstruction. Using a GPU implementation we can reconstruct 2.2 - 10° transient frames per second. The reconstruction
successfully separates the three returns due to the two specular interactions and direct illumination.

Abstract

Transient images help to analyze light transport in scenes. Besides
two spatial dimensions, they are resolved in time of flight. Cost-
efficient approaches for their capture use amplitude modulated con-
tinuous wave lidar systems but typically take more than a minute of
capture time. We propose new techniques for measurement and re-
construction of transient images, which drastically reduce this cap-
ture time. To this end, we pose the problem of reconstruction as a
trigonometric moment problem. A vast body of mathematical liter-
ature provides powerful solutions to such problems. In particular,
the maximum entropy spectral estimate and the Pisarenko estimate
provide two closed-form solutions for reconstruction using contin-
uous densities or sparse distributions, respectively. Both methods
can separate m distinct returns using measurements at m modula-
tion frequencies. For m = 3 our experiments with measured data
confirm this. Our GPU-accelerated implementation can reconstruct
more than 100000 frames of a transient image per second. Addi-
tionally, we propose modifications of the capture routine to achieve
the required sinusoidal modulation without increasing the capture
time. This allows us to capture up to 18.6 transient images per sec-
ond, leading to transient video. An important byproduct is a method
for removal of multipath interference in range imaging.
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1 Introduction

A wide range of consumers has access to amplitude modulated con-
tinuous wave (AMCW) lidar systems such as Microsoft Kinect for
Xbox One. Typically, these cameras are used for range imaging. In
this application the time of flight light takes from an active illumi-
nation into the scene and back to the camera is measured indirectly.
The active illumination is modulated with a high-frequent periodic
signal and the phase shift of the signal scattered back to the sensor
is measured.

In the presence of global illumination effects, the assumption of a
unique time of flight no longer holds, since light may reach points
in the scene on many different paths of different length. Assum-
ing existence of a unique phase shift during reconstruction leads to
systematic errors in range images, which are often far greater than
precision errors due to sensor noise. This is known as multipath
interference.

Transient images model this complex behavior more completely. In
such an image each pixel stores a time-dependent impulse response
indicating how much light returned after a particular time of flight.
This enables applications such as separation of direct and indirect
illumination [Wu et al. 2014] or non-line-of-sight imaging [Velten
et al. 2012]. It has been shown that an AMCW lidar system can
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be used to estimate a transient image using measurements at many
modulation frequencies [Heide et al. 2013]. While this is among
the most cost-efficient approaches for measuring transient images,
it has difficulties reconstructing complex impulse responses, mea-
surement takes a minute and reconstruction takes even longer.

We propose a novel method for reconstructing transient images
from AMCW lidar measurements. Our approach drastically re-
duces the number of required measurements and still success-
fully reconstructs complex impulse responses. Reconstruction is
done through highly efficient closed-form solutions. The technique
scales well from measurement of high quality transient images to
quick heuristic measurements. We use the latter for reduction of
multipath interference in range imaging.

At the core of our work is the finding that a specific measurement
procedure turns reconstruction of impulse responses into so-called
trigonometric moment problems. This kind of inverse problems
is extremely well-studied and a body of literature provides various
efficient solutions. In particular, we use the maximum entropy spec-
tral estimate introduced in Section 3.2 and the Pisarenko estimate
described in Section 5.1.

The maximum entropy spectral estimate reconstructs responses as
continuous densities via a closed-form solution. The Pisarenko es-
timate is the limit case of the maximum entropy spectral estimate
for sparse responses. If a sparse response with m € N returns is
present, this can be detected using measurements at m + 1 frequen-
cies and the Pisarenko estimate can provide a perfect reconstruc-
tion. Otherwise, the maximum entropy spectral estimate can pro-
vide a continuous reconstruction, reflecting remaining uncertainty
through the smoothness of the peaks.

Both techniques require sinusoidal modulation. We introduce a
novel method to accomplish this in Section 4.1. This way, our
prototype hardware is capable of measuring up to 18.6 transient
images of reasonable quality per second as demonstrated in Section
6.3. Such images can also be used for improved range imaging as
demonstrated in Section 6.2. Higher quality measurements can take
a few seconds because it is advisable to average many captures to
improve the signal to noise ratio.

2 Related Work

In recent years transient imaging has been introduced as an excit-
ing new imaging modality. Such images can be understood as video
recording the return of light to a camera at an extreme frame rate
when the scene is lit by an infinitesimally short light pulse. The first
general hardware setup for their measurement uses a femtosecond
laser and a streak camera [Velten et al. 2011; Velten et al. 2013].
The laser sends repeated short light pulses into the scene while the
streak camera directs light returning at different times to different
rows of the image sensor. This way a transient image can be cap-
tured one row at a time with a temporal resolution around 2ps. Cap-
ture takes roughly one hour. Later work uses interferometry and
several hours of capture time to push temporal resolution to 33fs
within a small capture volume [Gkioulekas et al. 2015].

Transient images add a fundamentally new dimension to images,
thus enabling new applications. Geometry can be reconstructed
solely by analyzing the light it reflects onto a diffuse wall [Vel-
ten et al. 2012]. Similarly, surface reflectance can be reconstructed
around a corner [Naik et al. 2011]. Separation of images into direct
illumination, subsurface scattering and indirect illumination can be
performed by analyzing impulse responses [Wu et al. 2014].

While these applications demonstrate the usefulness of transient
images, they are limited by the high cost and long measurement
times of the involved hardware. A drastically faster and more cost-
efficient approach uses AMCW lidar systems [Heide et al. 2013].
These cameras apply a modulation signal at the light source and
the sensor. Effectively this means that they measure the correlation
of a transient image with a time-dependent, periodic signal. Using
measurements at many different modulation frequencies, the au-
thors reconstruct the transient image by solving an inverse problem
with soft, linear constraints enforcing compatibility with the mea-
surements and additional temporal and spatial regularization priors.
This way, transient images can be captured within a minute, but the
regularization priors tend to lose high-frequency temporal details
and reconstruction takes several minutes.

Subsequent works explore various measurement procedures, priors
and reconstruction algorithms. Kadambi et al. [2013] use a broad-
band modulation and sample it at many phase shifts. The arising
inverse problem is solved with various linear and non-linear priors.
Kirmani et al. [2013] assume sinusoidal modulation at multiple fre-
quencies with a common base frequency. These measurements are
used as soft constraint to reconstruct a combination of two Dirac-
é pulses. Lin et al. [2014] use a similar input but employ an in-
verse Fourier transform with subsequent corrective post-processing.
Bhandari et al. [2014b] use measurements at many frequencies and
orthogonal matching pursuit to estimate a few Dirac-§ pulses. Qiao
et al. [2015] use a logarithmic prior to reward sparsity. Kadambi
et al. [2015] consider measurements as a function of frequency and
derive times of flight from the frequencies in this signal. Bhan-
dari et al. [2014a] present a method using sinusoidal modulation at
2-m+ 1 frequencies to reconstruct a linear combination of m € N
Dirac-¢ distributions in closed-form. With measurements from Mi-
crosoft Kinect for Xbox One they successfully separate two returns
using measurements at 21 frequencies.

At the other end of the spectrum there are works using far fewer
measurements to reconstruct range images. In this context recon-
struction of impulse responses only serves as intermediate step to
model multipath interference. Using measurements at two mod-
ulation frequencies, two Dirac-§ distributions can be fitted to the
measurements using a non-linear optimization [Dorrington et al.
2011]. Alternatively, measurements at four frequencies can be used
to estimate parameters of a similar model in closed form [God-
baz et al. 2012]. It is also possible to use a more sophisticated
L -regularization on a general impulse response [Freedman et al.
2014]. For application in real time the authors store the results in a
four-dimensional look-up table to process three frequency measure-
ments quickly. Gupta et al. [2015] observe that diffuse multipath in-
terference tends to cancel out at high frequencies and thus propose
to reconstruct range from few measurements at high frequency.

The above works can only capture transient images using an ac-
tive illumination to generate a repetitive event. Transient images of
non-repetitive events have been recorded in a single capture using
compressed sensing, although this approach sacrifices spatial reso-
lution for temporal resolution [Gao et al. 2014]. When range imag-
ing is the primary concern, it is also possible to reduce multipath
interference without additional measurements. To this end, diffuse
interreflections in the scene can be modeled explicitly and the esti-
mated multipath interference can be subtracted from the measure-
ment [Fuchs 2010; Jimenez et al. 2012]. While this saves mea-
surement time, it requires substantial post-processing time. Ground
truth data for transient imaging can be generated with specialized
Monte Carlo renderers [Jarabo et al. 2014].



3 Reconstruction of Impulse Responses

In the present section we demonstrate how to cast the inverse prob-
lem encountered in transient imaging with AMCW lidar systems
into a trigonometric moment problem. This allows us to introduce
our highly efficient closed-form solution and to understand some of
its properties. Though, before dealing with the inverse problem we
need to describe the forward model.

3.1 Signal Formation Model

Suppose g(7) is the impulse response for a single pixel in a transient
image, mapping 7 € R to the density of light returning after this
time of flight (see Figure 2a, 2b). The integral f; g(7)dr tells how
much light returns in the time interval [a, b]. Measurements of an
AMCW lidar system for a single pixel can be computed directly
from the information of the corresponding transient pixel g.

The active illumination is modulated by a T-periodic signal s;(7)
and the pixel receives the convolved signal g * s;. The sensor is
modulated with another T-periodic signal ss(7). Throughout the
exposure time it integrates over the resulting signal g * s; - ss. For
simplicity we assume that it integrates exactly one period. Thus the
measurement at the pixel is

%'ﬂ<gmawy&vMT=Awwﬂ-m*&xﬂw

where s; x ss denotes periodic cross-correlation.

This means that the sensor measures the correlation between the
impulse response g and the effective modulation se := s; * Ss.
At this point, it is interesting to note that all information that can
possibly be captured by a pixel of an AMCW lidar system is part of
the transient pixel g. Vice versa, many AMCW lidar systems allow
customization of the modulation and thus a lot of information about
g can be captured by using many modulation functions. This shows
how closely these two imaging modalities are linked.

Our method assumes measurements with a specific set of modu-
lation functions. We now introduce these assumptions and later
demonstrate their practical implementation in Section 4. First we
fix a base frequency f € R. In most of our experiments this is
23MHz. Furthermore, we fix the number of non-zero frequencies
m € N we want to measure. This is one of two major parame-
ters allowing trade-offs between capture time and quality. Our ex-
periments use m € {3,...,8}. Now forall j € {0,...,m} we
sequentially use the effective modulation functions

se(r) =cos(j-2-m-f-7) and se(r)=sin(j-2-7-f 7).

For convenience let ¢ := 2 m - f - 7 and s(¢) := se(525). The
base frequency should be chosen such that its wavelength is longer
than all interesting light paths. Otherwise phase ambiguity arises
which we model by defining

> p+l-2-7
h = — .
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We can only reconstruct the phase-dependent, 2 - w-periodic func-
tion h, not the time-dependent, aperiodic function g. To further
simplify notions we combine two real measurements into a single
complex phasor (see Figure 2b):
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The measurements bo, ..., b, are essentially Fourier coefficients
of the 2 - w-periodic function h. However, since h is a density
function, the preferred term in probability theory is trigonometric
moments. Figure 2c visualizes them per pixel.

From this point onward our main concern is reconstruction of h
from by, ..., by. This inverse problem is known as trigonometric
moment problem and it is very well-studied [Karlin and Studden
1966; Krein and Nudel’'man 1977]. To present our solution we re-
quire a few additional definitions.

Definition 1. Let b := (bo,...,bx)" € C™* be the vector of
trigonometric moments. It is generated by the vector of basis func-
tions s : R — C™%! with s;(¢) := exp(i - j - ©), i.e.

b :/O K h(e) - s(p)dep. ¢))

Since h is real, we define moments with negative index using the
complex conjugate b_; := b;. Finally, let B € C(m+1x(m+1)
denote the Toeplitz matrix defined by

bo b1 -+ b_m
m b b
B = (bj—k)jk=0 = ! ?
: . b
by - by bo

3.2 Reconstruction via Trigonometric Moments

To make the most of our measurements we incorporate them into
the reconstruction as a hard constraint; that is, we only admit den-
sities fulfilling Equation (1). Unfortunately, this generally does not
determine the solution uniquely. The data leaves us with uncer-
tainty about the precise shape of the density function. A good re-
construction should reflect this uncertainty. It should not localize
density unless the data enforces such a localization. Any other be-
havior would be arbitrary and could lead to wrong conclusions.

We implement this requirement by asking for the distribution of
minimal Burg entropy [Burg 1975]. Burg entropy of a density A on
[0,2 - 7] is defined as

H(h) ::/0 'wflogh(ap)dgo.

This is not to be confused with the more common Boltzmann-
Shannon entropy, which integrates —h(p) - log h(¢). By min-
imizing Burg entropy we punish small densities heavily because
—logh — oo as h — 0. On the other hand very big densities
are rewarded only slightly because log h grows slowly. In terms of
minimal Burg entropy, a density is optimal if it achieves moderate
densities over large intervals. In this sense uncertainty is rewarded.

This prior is of particular interest to us because it admits a closed-
form solution of the trigonometric moment problem. It is known as
maximum entropy spectral estimate [Burg 1975].

Theorem 1. Suppose that B is positive-definite. Let

1 eg B 1. e
h = 2
@) = ol B s @
where g := (1,0,..., 0)T € R™ denotes the first canonical

basis vector. Then h is a positive density fulfilling Equation (1) and
among all such densities it has minimal Burg entropy H(h).

Proof. See [Burg 1975, p. 8 ff.] or supplementary. O
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Figure 2: A schematic visualization of signal formation and our signal reconstruction. A lit scene implicitly defines a transient image resolved
in time of flight T or equivalently phase p = 2 - - f - T (2a [Velten et al. 2013]). Per pixel, an AMCW lidar system correlates this signal
with m + 1 periodic modulation functions (2b). This yields m + 1 = 8 images holding complex trigonometric moments per pixel (2c). These
images are the only input of our closed-form reconstruction. The signal is reconstructed as continuous density (2d top) which is the reciprocal
of a Fourier series (2d bottom). Reconstruction per pixel yields the full time-resolved transient image (2e).

In spite of its remarkable properties of matching all measurements
exactly while minimizing the prior, Equation (2) can be evaluated
easily. The term mostly consists of dot products and basic arith-
metic operations. To compute ed - B~! we need to solve a system
of linear equations. This system has a very special structure which
can be exploited by fast algorithms solving it in time O(m?) or
even superfast algorithms solving it in O(m - log? m) [Ammar and
Gragg 1988]. Details are given in the supplementary. The result is
a smooth reconstruction as shown in Figure 2d and 2e.

3.3 Properties of the Reconstruction

At a very general level Theorem 1 provides an alternative to a com-
mon inverse Fourier transform for a truncated series of Fourier coef-
ficients. While a common inverse Fourier transform would simply
set all unknown Fourier coefficients to zero, this solution chooses
them to minimize Burg entropy. Still, it matches the given Fourier
coefficients exactly. The major advantage is that the reconstruction
is known to be a positive density. Therefore, when the application
provides this prior knowledge, the maximum entropy spectral esti-
mate should be preferred over a common inverse Fourier transform.

Effectively, Equation (2) defines the reciprocal of a positive Fourier
series. Everything except for the term including s(y) is a constant.
Using |z|*> = z-Z for z € C, this last expression can be rewritten as

oF B s(@)F = el B s(p) ") B e,

where s™ denotes the conjugate transpose. The product s - s* is an
(m+1) x (m+1) matrix with entries exp(—i-m-p), ..., exp(i-m-
) on its diagonals. Thus, the expression is a positive Fourier series
with frequency components ranging from —m to m (see Figure 2d).

It can be regarded as the Fourier series of minimal degree such that
its reciprocal produces the prescribed trigonometric moments. If
B is positive-definite, this Fourier series has no root. Still, it can
be close to zero. Whenever this happens, the reconstructed density
exhibits a sharp peak. In practice, this is very common. The limit
case is a perfectly sparse distribution (see Section 5.1).

The assumption of positive-definite B may seem like a limitation
of the reconstruction, but in fact it is not. Physically meaningful
measurements allow nothing else.

Proposition 1 ([Krein and Nudel’man 1977, p. 65, p. 78]). Let h
be non-negative and let B be the Toeplitz matrix as in Definition 1.
If B # 0, B is positive-definite.

This is a very elegant characterization of all valid measurements.
If a measurement induces a matrix B with a negative eigenvalue,
it has to be faulty because no impulse response h could have gen-
erated it. Otherwise, Theorem 1 (or Theorem 2 below) guarantees
a reconstruction compatible with all measured data. Being able to
judge the validity of measurements in such a way is a very useful
tool for validation of measurement procedures. Alternatively, this
result can be used to estimate the zeroth moment bg as demonstrated
in Section 4.3.

4 Measurement Procedure

To use the maximum entropy spectral estimate with measured data
we need to acquire measurements at specific frequencies with si-
nusoidal modulation as explained in Section 3.1. In the following,
we present methods to achieve this robustly. Our experiments use a
modified version of the hardware setup used in [Heide et al. 2013],
but we believe that the proposed methods can be employed to a
wide range of hardware including Microsoft Kinect for Xbox One
[Bhandari et al. 2014a].

4.1 Achieving Sinusoidal Modulation

It is difficult to achieve exact sinusoidal modulation by adjusting
the electronics providing the modulation signal. Fortunately, there
is a robust workaround leading to a modulation that is arbitrarily
close to a sinusoidal. For this to work, it has to be possible to ad-
just the phase shift between the light modulation s; and the sensor
modulation ss. This shifts the effective modulation s.

Harmonic cancellation [Payne et al. 2010] uses n € N equidistant
phase shifts and builds a linear combination of the resulting mea-
surements. This is equivalent to generating a linear combination of
the phase-shifted modulations. The specific linear combination is

n—1
. s s

This new effective modulation is free of harmonic frequencies up
to harmonic 2 - n — 1. Use of harmonic cancellation does not in-
crease measurement times because each phase shift can be used for
a fraction of the exposure time that reflects the weight in the linear
combination [Payne et al. 2010].
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Figure 3: The modulation arising from Equation (3) for a triangu-
lar original modulation s. For n = 8 it is close to a sinusoidal.
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Figure 4: We point the laser at the sensor at short range using a
neutral density filter with 5.8%o translucency to avoid overexposure
and a diffusor to ensure a uniform light distribution on the sensor.
The filter has low reflectivity to avoid undesired interreflections.

We have adopted harmonic cancellation in our prototype hardware
but only get robust results up to n = 3 due to timing issues. There-
fore, we propose an alternate scheme. We do not use equidistant
phase shifts but split up the exposure time evenly. The k-th interval
of the exposure time uses phase shift arccos (1 - ﬁnﬂ) Thus,
the effective modulation becomes

n—1
l-Zs(gp—arccos(l—m>). 3)
n &= n

In the supplementary material we show that this sum approaches
a perfect sinusoidal for n — oo. For this to work it should be
used in combination with four-bucket sampling. In practice, we use
this arccos-phase sampling with n = 8. This yields a satisfactory
approximation to a sinusoidal as shown in Figure 3.

4.2 Calibration

The above methods make the effective modulation sinusoidal.
Since we use direct digital synthesis for generation of the modu-
lation signal, we can also rely on the accuracy of the frequency
ratios. Thus, the only remaining degrees of freedom for the modu-
lation signal are the phase shift and the amplitude. Measurements
show that these need to be calibrated per pixel.

To this end, we point the light source at the sensor as shown in Fig-
ure 4. This whole setup is designed to avoid multipath interference.
We expect that most light only passes through the filter once before
it reaches the sensor. Other light paths should be attenuated due to
the low reflectivity of the filter and either way they should be rather
short.

We model the impulse response at each pixel in this setup by a
scaled Dirac-0 pulse at phase zero. Thus, in a properly calibrated
setup we would expect to obtain moments

bj =bo-exp(i-j-0)=bgforje{0,...,m}

The actual measured values will deviate from this. To apply a cali-
bration to a measurement we simply divide the moments computed
from the measurement by the moments computed from the calibra-
tion. This way, we simultaneously compensate varying phase shifts

and amplitudes. To avoid changing overall brightness we normalize
vectors of moments from the calibration such that by = 1 prior to
this step. For optimal results, calibration measurements should be
performed with the same parameters as actual measurements.

Note that the setup in Figure 4 differs from the more common cali-
bration setup of pointing the light source and the camera at a white
wall [Heide et al. 2013; Lin et al. 2014]. We also experimented
with this setup but found that it makes it hard to avoid multipath
interference leading to systematic errors. If the impulse response in
the calibration is not a Dirac-9, calibration procedures effectively
perform a deconvolution with the actual impulse response leading
to systematic distortions of the reconstruction.

4.3 The Zeroth Moment

The zeroth moment is defined by by = 02'” h(p)dep, so it captures
total brightness due to the active illumination without any modula-
tion. All related work using AMCW lidar systems, except for God-
baz et al. [2012], only incorporates measurements with zero-mean
modulation, meaning that the captured data is literally orthogonal
to the zeroth moment. This misses important information. Con-
sider the uniform density h(p) := ﬁ Its zeroth moment is one,
whereas all other moments are zero. If the zeroth moment is not
measured, an arbitrarily strong uniform component can be added
to the impulse response without changing the data. In this sense,
the zeroth moment governs sparsity of the distribution, as demon-
strated in Figure 5. In Section 5.1 we find that a minimal choice of
the zeroth moment can be used to enforce a sparse reconstruction
for any measurement.

The best practice for capturing the zeroth moment is to capture two
images without sensor modulation, one with and one without active
illumination. Their difference provides the zeroth moment. Since
our prototype hardware cannot measure without modulation, we
instead perform measurements at 900kHz. This corresponds to a
wavelength of 333.1m so the sinusoidal modulation wave should
be nearly constant across relevant lengths of light paths.

Alternatively, we can exploit Proposition 1 to estimate by based on
prior knowledge about the sparsity of impulse responses. The ze-
roth moment by constitutes the main diagonal of the Toeplitz matrix
B. If we have not measured by yet, we can set the main diagonal
of B to zero and compute its smallest eigenvalue \,,, which will be
negative. We can fix the estimated uniform component ¢ > 0 and
set bg := € — A, to ensure that the Toeplitz matrix is positive defi-
nite with smallest eigenvalue €. Smaller values of € lead to sparser
reconstructions.

This method is also suited for correcting invalid measurements if
we have measured the zeroth moment. Whenever we encounter a
Toeplitz matrix with a smallest eigenvalue less than ¢, we replace
bo by € — A, as defined above. This changes the measurement
in a minimal way to make it valid. Alternatively, b1, ..., b, can
be scaled down to avoid changing overall brightness. We refer to
this procedure as biasing. For scenes with sparse impulse responses
sensor noise makes it indispensable.

5 Analysis of Transient Images

The maximum entropy spectral estimate gives us efficient random
access to a transient image. Though, in many application scenarios
we would like to infer other information immediately. In this sec-
tion we present various efficient methods to infer information about
a transient image without computing it completely. We also present
upper bounds for the error of the reconstruction.
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Figure 5: Various reconstructions arising from Equation (2) for
the transient pixel from Figure 2b with m = 5 and different values
of the zeroth moment byg. The x-axis shows ¢, the y-axis h(y).
The zeroth moment governs sparsity of the reconstruction. The best
result is obtained with the ground truth by = 67.5. For by = 61 the
Toeplitz matrix B is nearly singular and the reconstruction is nearly
sparse. In between it changes continuously. The strong changes
illustrate the importance of measuring by accurately.

5.1 Perfect Reconstruction of a Sparse Response

In Section 4.3 we observed that the smallest eigenvalue of the
Toeplitz matrix B can be seen as a measure of the strength of uni-
form components in the impulse response (see Figure 5). From
Proposition 1 we know that this eigenvalue can never be negative.
A natural question to ask is what happens when the eigenvalue is
zero. It turns out that this corresponds to a perfectly sparse impulse
response with no more than m returns.

Theorem 2 ([Krein and Nudel’man 1977, p. 65, p. 78]). Sup-
pose B is positive semi-definite but singular. Then there exists
©0y -+, Pm-1 € [0,2 7] and wo, ..., Wm—1 € Ry such that

m—1

b= Z wy - S(¢k)- )

k=0

In consequence, a valid reconstruction for the trigonometric mo-
. . m—1

ments bo, . .., by is given by > )"" " wy - 0, where Oy, denotes a

Dirac-6 distribution at py,.

There is no other valid reconstruction. Vice versa B is known to
be positive semi-definite and singular if it arises from an impulse
response consisting of no more than m Dirac-§ distributions.

Letc € C™ ! withe # 0and B - ¢ = 0. Then oo, . . .
roots of the function c* - s(p).

, Pm—1 are

The fact that this reconstruction is the only one providing a valid
explanation for the measurements is remarkable. It means that we
can achieve a perfect reconstruction whenever the ground truth con-
sists of m Dirac-0 pulses or less. We can also compute this unique
reconstruction efficiently. We only need to compute the kernel of
B to obtain c. Computing the roots of c* - s(¢) yields the location
of the Dirac- pulses. We can substitute z := exp(i - ¢) to turn
this into a polynomial equation of degree m. Finally, the weights
wo, ..., Wm—1 can be computed by solving the system of linear
equations (4).

While we have formulated this result for the case that B is singular,
it can also be used in the general case. We can simply separate the
distribution into a uniform component and a sparse component. To
this end we compute the smallest eigenvalue A, of B and a corre-
sponding eigenvector c. Then )\, gives the strength of the uniform
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Figure 6: A scene where direct illumination and two mirrors are
used to illuminate a wall three times (cf. Figure 1). Four moments
are measured by averaging 30 takes to improve signal to noise ra-
tio. Top: The strength of the strongest three returns computed with
the Pisarenko estimate. Bottom: The corresponding time of flight.
The different light paths through the mirrors are separated clearly.
Phase noise increases as the strength of the return weakens.

component and the sparse component can be computed from c as
above but using by — A, in place of bo.

If specular interactions dominate, the uniform component becomes
small and measurement of the zeroth moment may be skipped. This
method is known as Pisarenko estimate and optimized algorithms
exist for its computation [Cybenko and Loan 1986]. It is closely
related to the work by Bhandari et al. [2014a], except that their
method requires more than twice as many measurements and does
not necessarily find a distribution compatible with all of them. It
can also be understood as closed-form implementation of the work
by Freedman et al. [2014] without error tolerance because their
technique minimizes by. The Pisarenko estimate realizes the the-
oretical best case of reconstructing the 2 - m real parameters de-
scribing m Dirac-9 distributions from m complex phasors.

While the Pisarenko estimate does not reflect uncertainty as rea-
sonably as the maximum entropy spectral estimate, it provides a
more explicit reconstruction. This eases analysis of transient im-
ages and provides excellent results if specular interactions domi-
nate as demonstrated in Figure 6. The reconstructed data directly
provides insight into the strength and time of returns per pixel.

A possible application of this is fast separation of illumination into
direct and indirect illumination. The direct component can be iden-
tified as first return with a weight above a relative threshold. Its
weight provides the strength of the direct return. The sum of the
other weights provides indirect returns.

5.2 Error Bounds

From Theorem 2 we know that we can obtain a perfect reconstruc-
tion if the ground truth is perfectly sparse. It is natural to expect
that the reconstruction is still very close to the ground truth when
the ground truth has a small uniform component. This motivates the
search for bounds on the error of the reconstruction. We suppose
that our measurements are correct and ask for the maximal possible
distance between the unknown ground truth and our reconstruction.

For the trigonometric moment problem this question is solved
[Karlsson and Georgiou 2013]. The authors observe that no mean-
ingful statements can be obtained if densities are considered di-
rectly. At any phase, sparse impulse responses may have zero den-
sity or a small Dirac-9 pulse corresponding to infinite density. Thus,
no useful bounds can be obtained. To get a meaningful result, den-
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Figure 7: Left: A synthetic ground truth (cf. Figure 11b) and
the corresponding maximum entropy spectral estimate for m = 5.
Right: The upper and lower bound for the smoothed density and
the smoothed densities themselves. Any density compatible with the
trigonometric moments used in the reconstruction is known to lie
within these bounds after smoothing. These bounds use r = 0.93.

sities are smoothed before analysis. This is done using the Poisson
kernel
1 1—r?

P, = s
() 2.1 |1—r-exp(i-p)l?

where r € [0, 1) governs the sharpness of the kernel. For » = 0 it
is constant, for » — 1 it converges to do.

The authors proceed to derive sharp upper and lower bounds for the
smoothed density h * P,(¢) where ¢ € R is arbitrary. The bounds
rely solely on the knowledge that A fulfills Equation (1). They can
be evaluated in closed form for any given b € C™*, » € (0,1)
and ¢ € R. For details please refer to the supplementary material.

Assuming correct measurements, the ground truth is known to ful-
fill Equation (1). Thus, we can compute an area containing its
smoothed density. The same holds for our reconstruction. If the
ground truth is reasonably close to a sparse distribution, this area is
pleasantly small as demonstrated in Figure 7. In this case, we can
be certain that the reconstruction is close to the ground truth and we
can give specific bounds on possible locations of local maxima in
the unknown ground truth.

5.3 Estimating Range

Range imaging with AMCW lidar systems is typically done in real-
time with a limited computing time budget. Therefore, it is worth-
while to implement highly optimized methods. The natural candi-
dates for estimates of range are local maxima of the reconstructed
density in Equation (2). Critical points of this function fulfill

ZZW (B~ -eo)-(j —k)- 2" * =0,

7=0 k=0

where z := exp(i - ). This is a polynomial equation of degree
2 - m so it can have up to 2 - m roots on the unit circle which
can be computed efficiently. Since the reconstructed density is a
smooth, periodic function, at most half of the critical points can
correspond to local maxima. A reasonable estimate for range is
that it corresponds to the first local maximum above a threshold.

If specular interactions are known to be the primary cause of mul-
tipath interference, an even faster approach uses the Pisarenko esti-
mate introduced in Section 5.1. This way, the degree of the arising
polynomial equation is halved. It is interesting to note that both
methods can reconstruct m distinct peaks. The maximum entropy
spectral estimate only requires the additional measurement of the
zeroth moment to estimate smoothness of the impulse response and
it only constructs m peaks when the data demands it (see Figure
5).

6 Results

In the following we present results measured with our prototype
hardware. The setup is similar to the one presented by Heide
et al. [2013] but additionally features the arccos-phase sampling
described in Section 4.1. The sensor is a CamBoard nano by
PMDTechnologies with a resolution of 163 - 120 pixels.

For the results in Figure 6, 8b, 8c, 9b, 9¢c, 10, 12 and 15 we aver-
age multiple takes to improve the signal to noise ratio of the data.
Note that our prototype hardware suffers from some systematic out-
liers due to synchronization issues. 5 — 10% of all captured images
differ significantly from other images captured with the same con-
figuration. When multiple takes are given for averaging, we auto-
matically discard such outliers before averaging. In videos we fill
in data missing due to outliers using data from the previous frame.

To further reduce noise we smooth moment images using a Gaus-
sian filter with a standard deviation of 0.6 pixels. For the maximum
entropy spectral estimate we use biasing as described in Section 4.3
to ensure that \,, > 4-1072 - by. Unless otherwise noted, this only
affects few pixels.

We have implemented evaluation of Equation (2) on the GPU in a
pixel shader and measure the run time on an nVidia Geforce GTX
780. The shader reconstructs 2.9 - 10°, 2.2 - 10° and 1.1 - 10°
transient frames per second for m = 3, m = 4 and m = 8, respec-
tively. This includes repeated computation of B~ - ey, although
this vector could be precomputed. This means that Equation (2) can
be evaluated 163 - 120 - 1.1 - 10° = 2.2 - 10° times per second for
m = 8. In fact, the algorithm is likely bandwidth limited so the
arithmetic operations can be completed even faster.

6.1 Transient Imaging

Our first experiment uses the scene shown in Figure 1 to provide a
challenging test case with complex specular interactions. The im-
pulse responses encountered for a single pixel can consist of three
distinct returns with high dynamic range. Light initially sweeps
from left to right, then the right mirror reflects it to the left and fi-
nally the left mirror reflects it to the right. These three returns have
different times of flight and the reconstruction has to separate them.

Figure 8 shows results obtained with the maximum entropy spectral
estimate for different measurement times using an exposure time of
1.92ms. With m = 3 (i.e. measurements at four frequencies in-
cluding the measurement for the zeroth moment at 900kHz) and a
single take we already successfully separate the three distinct re-
turns. However, the reconstruction includes significant uncertainty
expressed by means of broad peaks with low density. This behav-
ior depends on the shape of the impulse response. Therefore, the
number two is slightly visible in Figure 8a for 7 = 11.3ns.

Additional frequency measurements yield sharper peaks. Atm = 4
some visible artifacts remain but all important features are recon-
structed. Using m = 8 further reduces these artifacts, leading to
a reconstruction with sharp peaks. On the other hand, the addi-
tional measurements also introduce additional noise and potential
contradictions in the sense of Proposition 1, thus making biasing
mandatory for 90% of all pixels.

The additional takes used for Figure 8b and 8c reduce the noise in
the input and the output alike. Figure 1 and Figure 8b show the
same measurement with one and 20 averaged takes, respectively.
While the reconstructed features are essentially identical, the aver-
aging leads to a result with substantially less noise. In spite of the
single take, Figure 8a appears less noisy than Figure 1 because the
greater uncertainty causes smoothing of impulse responses.
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(a) m = 3, f = 23MHz, no averaging, 11Hz capture rate.
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(b) m = 4, f = 23MHz, 20 averaged takes, 0.44Hz capture rate.
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(¢) m =8, f = 11.5MHz, 40 averaged takes, 0.12Hz capture rate.

Figure 8: A transient image of the scene shown in Figure 1 cap-
tured with different trade-offs between capture time and quality.
The images show the maximum entropy spectral estimate at differ-
ent times. Note how the three returns are separated.

Density images such as those shown in Figure 8 generally exhibit
rather strong noise because slight changes in the sharpness or phase
of a peak can lead to strong changes in density at a fixed point
in time. To analyze whether this noise is systematic, we consider
the total density integrated up to a point in time. We refer to the
resulting images as cumulative transient images and compute them
by numerical quadrature with 10° equidistant samples.

Figure 9 shows such cumulative transient images for the above ex-
periment. We note that uncertainty in the reconstruction translates
to smeared out or misshaped wave fronts. However, the total bright-
ness contributed by the waves is always reconstructed correctly.

For an example with diffuse interactions we point the camera at a
corner but only illuminate the left wall of this corner directly. Most
of the right wall is lit indirectly. As shown in Figure 10, the mea-
surement of the zeroth moment helps us to adequately reconstruct
the corresponding transient image. While the wave on the left wall
is very sharp, the right wall receives a soft wave due to diffuse in-
terreflections.

The comparison of our proposed methods to related work in Figure
11 uses synthetic data. For visualization we once more use cumu-
lative density because sparse reconstructions cannot be represented
by a common density function. The first example in Figure 11a con-
stitutes an ideal case for all techniques and thus all techniques ob-
tain an excellent reconstruction without noise. However, the Dirac-
¢ model [Godbaz et al. 2012] and SPUMIC [Kirmani et al. 2013]
are quite sensitive to noise.

The second example in Figure 11b provides a more realistic test
case consisting of three continuous returns modeled by exponen-
tially modified Gaussians [Heide et al. 2014]. The Dirac-d model
and SPUMIC, both targeted at two sparse returns, only capture the
first return adequately and become even more sensitive to noise.
SRA [Freedman et al. 2014] has a bias towards stronger sparsity
and less overall brightness. Therefore, it loses the third return
but successfully reduces the impact of noise. The Pisarenko esti-

7 = 11.3ns 7 = 19.3ns 7T = 26.7ns

(a) m = 3, f = 23MHz, no averaging, 11Hz capture rate.

(b) m = 4, f = 23MHz, 20 averaged takes, 0.44Hz capture rate.

(¢) m =8, f = 11.5MHz, 40 averaged takes, 0.12Hz capture rate.

Figure 9: Frames of the cumulative transient images correspond-
ing to Figure 8. Each image is obtained by numerical quadrature
of the maximum entropy spectral estimate up to the time specified.

(@) T = 13.1ns (b) 7 = 15.5ns (¢) ™ = 16.1ns
Figure 10: Frames of a transient image showing a corner where
only the left wall is lit directly. Thanks to the measurement of the
zeroth moment the maximum entropy spectral estimate reconstructs
a sharp peak for directly lit parts and a smooth peak for indirectly
lit parts. This measurement uses f = 23MHz, m = 4 and 40 takes.

The capture rate is 0.22Hz.

mate provides a better reconstruction but is more sensitive to noise.
The maximum entropy spectral estimate adequately reconstructs
the continuous return. Noise mostly affects sharpness of the peaks.

6.2 Range Imaging

As benchmark for range imaging we place camera and light source
next to each other and capture a diffuse corner. This is a prime
example of diffuse multipath interference. Figure 12 shows our
results. A naive reconstruction using measurements at a single fre-
quency exhibits severe distortions. Range is overestimated because
long indirect paths contribute to the estimate. Using the Dirac-0
model [Godbaz et al. 2012] reduces these systematic distortions but
does not behave robustly. The maximum entropy spectral estimate
(see Section 5.3) provides robust results and reduces distortions due
to multipath interference heavily. The Pisarenko estimate suffers
from severe outliers. This is understandable because its inherent
assumption of a sparse impulse response is inadequate for diffuse
multipath interference. This demonstrates the benefit of including
the zeroth moment in the reconstruction.
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Figure 11: Reconstruction results of various techniques using syn-
thetic data with sinusoidal modulation. The x-axis shows time of
flight in nanoseconds, the y-axis cumulative density of the recon-
struction. Red graphs use measurements without noise, gray graphs
originate from measurements with a simulated signal to noise ratio
of 70 : 1 due to Gaussian noise. Each plot contains the ground
truth as dotted blue line. The Dirac-0 model [Godbaz et al. 2012]
uses measurements at 11, 22, 33, 44MHz, Kirmani et al. [2013]
uses 11, 22, ..., 66MHz and Freedman et al. [2014] uses 23, 46,
69MHz and € = 0.05. Our proposed techniques use measurements
at 0 (maximum entropy spectral estimate only) 23, 46, 69MHz.

6.3 Transient Video

Our hardware is capable of capturing transient images at video
frame rate. If we choose m = 3 and use a Pisarenko estimate
or a maximum entropy spectral estimate with biasing of the zeroth
moment, we require measurements at three frequencies. With four-
bucket sampling this amounts to twelve images per transient image.
Using an exposure of 0.5ms and f = 23MHz we can capture such
sets of images at 18.6Hz. The result is a transient video, i.e. a four-
dimensional function g(7,t,z,y) mapping time of flight 7 € R,
time ¢t € R and pixel coordinates z,y € R to density of brightness.

In our experimental setup a mirror is placed in front of a lit wall to
reflect part of the light away from the wall and into another mirror.
The latter mirror reflects the light back onto the wall such that part
of it receives light at two different times of flight. An actor enters
from the left, waves and leaves to the right. Therefore, the scene
exhibits interesting features in the dimension of time of flight 7 as
well as common time ¢.

Figure 13 shows three frames of the transient images for three
frames of the transient video. Although the images are quite noisy
due to the short exposure time, all important features are recon-
structed correctly. The light first returns from the actor, then from
the direct interaction with the wall and finally it returns after being
reflected by both mirrors and the wall.

We can use the Pisarenko estimate for separation of direct and in-
direct illumination as proposed in Section 5.1. Figure 14 shows the
same frames as Figure 13 but this time direct and indirect illumina-

(a) Single frequency (f = 23MHz). (b) [Godbaz et al. 2012].

(¢) Maximum entropy spectral esti- (d) Pisarenko estimate (m = 4, pro-
mate (m = 3, proposed method). posed method).

Figure 12: Point clouds of a corner reconstructed with various
techniques. All reconstructions use the same data set with f =
23MHz and 4 averaged takes (without outliers). The capture rate is
2.2Hz. The black line is the ground truth.
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Figure 13: A transient video is a four-dimensional image param-
eterized over time of flight, time and two spatial dimensions. The
light wave progresses through the scene as time of flight increases
whereas the actor moves through the scene as time increases.

tion are separated. The indirect component exhibits a few outliers
but generally separates the lighting due to the mirrors correctly from
other lighting. Thanks to this correct separation, the time of flight
for the direct return is free of multipath interference.

The sum of both components is the zeroth moment shown in Fig-
ure 14a. This image has not been measured directly but has been
computed from three frequency measurements as described in Sec-
tion 4.3. This is of interest by itself because it provides a method to
compute images including solely active illumination.

More results can be found in the supplementary video.
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(a) Direct and indirect illumination.
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(¢) Indirect illumination.
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(d) Time of flight for the direct return.

Figure 14: Separation of direct and indirect illumination in a tran-
sient video. Note that the lighting due to the mirror is separated
from direct illumination and does not distort the time of flight.

6.4 Limitations

Our proposed methods are fundamentally limited by the small
amount of input data they require. While a continuous impulse re-
sponse has infinite degrees of freedom our methods only get 2-m+-1
real quantities to reconstruct it. An exact reconstruction is only
guaranteed in the case of a sparse response with m returns or less
(see Theorem 2). In absence of this special case the prior in the
maximum entropy spectral estimate reflects uncertainty in the re-
construction by smoothing of the peaks. This behavior depends on
the form of the impulse response, which is why the number 2 is
visible in Figure 8a for 7 = 11.3ns. The smoothing can provide a
plausible reconstruction for diffuse multipath interference (see Fig-
ure 10) but accuracy is limited by the lack of data.

If two returns are temporally close, uncertainty can cause them to
merge into one (see Figure 15). It is not possible to specify generic
lower or upper bounds on the required distance of returns for suc-
cessful separation. It rather depends on the complexity of the im-
pulse response and the amount and quality of input data. Under the
assumption of perfect data and perfect sparsity, returns can be arbi-
trarily close, but in presence of uniform components and noise they
have to be farther apart.

Finally, sensor noise and calibration can be problematic. This is par-
ticularly true for our prototype hardware, which lacks active cool-
ing. Since AMCW lidar systems exhibit thermal drift, we choose
to perform calibration and all measurements after some warm-up
time. Otherwise thermal drift may invalidate the calibration. How-

Number 2

High uncertainty ﬁr

Left
10ns 12ns 14ns 16ns 18ns 20ns 22ns 24ns 26ns 28ns

Figure 15: A streak image showing density for the dataset in Fig-
ure 9b. The x-axis corresponds to time of flight, the y-axis to co-
ordinates along the scanline highlighted in Figure 9b. Note the
smoothed densities in regions of high uncertainty.

ever, these increased temperatures diminish the signal to noise ratio.
Besides slight miscalibration due to thermal drift can still be an is-
sue. This can be detected by observing that the Toeplitz matrix has
negative eigenvalues for many pixels (see Proposition 1).

Noise affects reconstructed density profiles by shifting peaks and
changing their sharpness. Since these effects are independent for
adjacent pixels, density images with sharp returns can appear very
noisy. The cumulative density within peaks is quite robust to noise
(see Figure 9). Averaging provides a reliable way to counteract
noise at the cost of increased capture times of several seconds. Bet-
ter hardware can speed this up.

It should also be noted that current AMCW lidar systems do not
support sufficiently high modulation frequencies to reach the tem-
poral resolution of setups with more sophisticated hardware [Vel-
ten et al. 2013; Gkioulekas et al. 2015]. This is problematic for
applications such as separation of subsurface scattering [Wu et al.
2014]. Future hardware developments may change this [Gupta et al.
2015].

7 Conclusion

We have presented a novel method to transfer AMCW lidar mea-
surements from the frequency domain to the time domain. At cap-
ture times of several seconds the quality of the results is competitive
with regard to previous works using AMCW lidar systems. It real-
izes the theoretical best case where m peaks can be reconstructed
from measurements at m frequencies. The technique scales well
to very short capture times. In fact measurement times for a whole
transient image become short enough to capture transient video at
18.6Hz where each frame is a transient image of lower quality. As
an important byproduct we obtain a robust and fast method to re-
move multipath interference for range imaging.

We believe that this method can become the default way to post-
process AMCW lidar measurements. Given access to a firmware
admitting customization of modulation frequencies, it should be
compatible with Microsoft Kinect for Xbox One [Bhandari et al.
2014a]. This will make fast transient imaging available to a wide
audience and may very well be a breakthrough for this novel imag-
ing modality. Besides, future software updates for shipped range
sensors may implement our technique to get improved range imag-
ing at no additional cost.
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