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Fig. 1. Our novel techniques for order-independent transparency (OIT) use moment-based reconstructions of
the transmittance. They can handle complicated participating media and transparent surfaces such as the
ship simultaneously. We use the same approach to render shadows for the transparent shadow casters. The
timings are full frame times for a resolution of 10242 on an NVIDIA GeForce GTX 1080 Ti rendering 49 million
transparent fragments.

Compositing transparent surfaces rendered in an arbitrary order requires techniques for order-independent
transparency. Each surface color needs to be multiplied by the appropriate transmittance to the eye to
incorporate occlusion. Building upon moment shadow mapping, we present a moment-based method for
compact storage and fast reconstruction of this depth-dependent function per pixel.Weworkwith the logarithm
of the transmittance such that the function may be accumulated additively rather thanmultiplicatively. Then an
additive rendering pass for all transparent surfaces yields moments. Moment-based reconstruction algorithms
provide approximations to the original function, which are used for compositing in a second additive pass. We
utilize existing algorithms with four or six power moments and develop new algorithms using eight power
moments or up to four trigonometric moments. The resulting techniques are completely order-independent,
work well for participating media as well as transparent surfaces and come in many variants providing
different tradeoffs. We also utilize the same approach for the closely related problem of computing shadows
for transparent surfaces.
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1 INTRODUCTION
Rendering transparent surfaces in real-time is challenging. While over and under blending [Porter
and Duff 1984] has had hardware support for decades, it cannot provide correct results unless the
geometry is sorted. Sorting all transparent geometry in large dynamic scenes is expensive and
in presence of intersections one has to sort fragments per pixel [Carpenter 1984]. The resulting
irregular workloads are a poor match for massively parallel graphics hardware.

To avoid this overhead, many heuristics have been proposed. Layer-based approaches accumulate
the transparent geometry into a fixed number of layers [Maule et al. 2013; Salvi et al. 2011; Salvi and
Vaidyanathan 2014]. This accumulation still depends on the order in which it is performed and thus
implementations require hardware that guarantees a deterministic pipeline order. Other heuristics
achieve complete order independence by using the same transmittance function independent of
the actual transparent geometry [McGuire and Bavoil 2013; McGuire and Mara 2017]. While this
approach is fast and easy to implement, results are inaccurate.
We build on recent advances in moment-based reconstructions [Peters and Klein 2015; Peters

et al. 2017] to derive a more accurate technique for order-independent transparency (OIT) that
relies on programmable shaders and additive blending only. The transmittance, which needs to be
accumulated multiplicatively, is represented in terms of its logarithm to enable additive accumula-
tion. An initial additive rendering pass then determines moments of this depth-dependent function
(Section 3.1). Once they are available, moment-based reconstructions provide approximations to
the transmittance at any depth (Section 3.2). Thus, a second additive rendering pass suffices to
composite all transparent surfaces.

When transparent surfaces are plentiful, the transmittance function is complicated. Its adequate
representation requires a large number ofmoments. Prior work in rendering has used up to six power
moments, which provide sufficient quality for most use cases (Section 4.1). For more challenging
cases, we push to an implementation with eight power moments but find that numerical imprecision
lets this approach perform only slightly better (Section 4.2). Therefore, we revisit reconstructions
based on trigonometric moments, i.e. Fourier coefficients of a positive signal (Section 5). This leads
to a more robust and expressive technique, albeit at a moderate increase in arithmetic operations.

Like OIT, rendering shadows means computing the transmittance. Thus, we apply the exact same
approach to render shadows for transparent surfaces through filterable shadow maps (Section 6).
Opaque shadow casters are handled separately.

We find that our novel techniques handle complex interactions between participating media and
other transparent surfaces faithfully (see Figure 1). The moment-based reconstructions are nearly
perfect for few transparent surfaces and smoothly transition to continuous transmittance functions
for more complicated situations. Since there are no hard thresholds, the results are entirely free
of popping artifacts. Even when no consistent pipeline order is maintained, the results remain
unchanged. Intersections of transparent surfaces are more challenging and may be blurred out,
dependent on the choice of moments and the number of present surfaces.
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2 RELATEDWORK
OIT strives to composite n ∈ N fragments with colors L0, . . . ,Ln−1, opacities α0, . . . ,αn−1 and
depths z0, . . . , zn−1. Application of the over operator [Porter and Duff 1984] in back-to-front order
yields the composited color

n−1∑
l=0

Ll · αl ·
n−1∏
k=0
zk<zl

(1 − αk ). (1)

The above product describes transmittance. Its dependence on occluding surfaces is the key chal-
lenge. Ordered traversal makes the problem simple and may be accomplished by storing all frag-
ments and sorting them explicitly on a per pixel basis [Carpenter 1984]. Hardware-accelerated
implementations exist [Yang et al. 2010] but the cost is considerable. Depth peeling uses the depth
buffer to achieve rendering in order, one surface at a time [Everitt 2001].

Rather than storing a variable number of fragments per pixel, a k-buffer [Bavoil et al. 2007] only
stores k ∈ N. Where this is insufficient, fragments are merged heuristically. Adaptive volumetric
shadow maps [Salvi et al. 2010] and adaptive transparency [Salvi et al. 2011] store an optimal
approximation to the transmittance function in a k-buffer. Adaptive transparency then composites
in a second pass. Deep shadow maps [Lokovic and Veach 2000] use a similar but more adaptive
representation. Multi-layer alpha blending [Salvi and Vaidyanathan 2014] composites into a k-
buffer directly, toggling between over- and under blending, dependent on stored depth values. All
these heuristics are not order-independent and necessitate a deterministic pipeline order. Hybrid
transparency [Maule et al. 2013] works similarly but explicitly uses the layers for the k foremost
surfaces. Thus, it is truly order-independent but fails in presence of many surfaces.
Stochastic transparency [Enderton et al. 2011] randomly discards fragments in proportion to

their opacity. The expected value is the ground truth but considerable filtering is needed to reduce
noise. The same idea has been used for shadows [McGuire and Enderton 2011; McGuire and Mara
2017]. Hashed alpha testing [Wyman and McGuire 2017] makes the noise temporally stable through
a deterministic hash.

Various single layer heuristics use an approximation to the transmittance function that is inde-
pendent of the actual geometry [McGuire and Bavoil 2013; McGuire and Mara 2017; Meshkin 2007].
In weighted blended OIT, transmittance falls of proportional to a user-defined rational function
[McGuire and Bavoil 2013]. Phenomenological transparency adds colored transmission and various
other effects [McGuire and Mara 2017]. These techniques are very fast, robust, easy to use and do
not require a deterministic order. However, the results differ from the ground truth substantially
and occlusion cues are lost.
Fourier opacity mapping [Jansen and Bavoil 2010] views transmittance as function of depth

and represents it in terms of its logarithm. The resulting absorbance enables additive rather
than multiplicative accumulation. As in convolution shadow mapping [Annen et al. 2007], the
function is then represented compactly by a Fourier series. The technique is particularly useful for
shadows of participating media because the corresponding absorbance functions are low-frequent.
Transmittance function mapping [Delalandre et al. 2011] takes a similar approach but represents the
transmittance directly. It is computed through ray marching, so order independence is no concern.
Like convolution shadow maps, moment shadow maps [Peters and Klein 2015] offer compact,

filterable representations of depth distributions for shadow mapping. Every texel stores four powers
of the depth such that filtered samples provide four power moments. An efficient closed form then
provides lower and upper bounds to the actual cumulative distribution function. Unlike convolution
shadow maps, moment shadow maps are capable of reconstructing sparse signals accurately.
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Subsequent work [Peters et al. 2017] has extended the technique to use six power moments
and has used it for shadows of transparent surfaces. The approach for transparent surfaces uses a
separate technique for OIT to render opaque and transparent surfaces to a single moment shadow
map. Another recent work [Peters 2017] investigates more compact storage of four power moments
and faster reconstruction.

3 PIPELINE
Our goal is to use an approach similar to Fourier opacity mapping for OIT. Rather than using a
Fourier series, we use moments as in moment shadowmapping. In the present section, we introduce
our rendering pipeline and regard moment-based reconstructions as a black box. Sections 4 and 5
discuss the various options for the reconstruction in detail.

3.1 Representing Absorbance through Moments
Like most techniques, we handle transparent geometry separately from opaque geometry. All
opaque geometry is rendered first using a depth buffer. This depth buffer is kept to render only
the visible transparent geometry. Transparent geometry is rendered twice, once to determine the
transmittance function per pixel and once to composite all transparent surfaces.

Recall from Equation (1) that the transmittance for a fragment at depth zf ∈ R is given by

T (zf ) :=
n−1∏
l=0

zl <zf

(1 − αl ).

Rather than implementing this multiplicative accumulation directly, we work in a logarithmic
domain (see Figure 2). We define the absorbance to zf as

A(zf ) := − lnT (zf ) =
n−1∑
l=0

zl <zf

− ln(1 − αl ).

Note that 0 ≤ αl < 1 and thus 0 ≤ − ln(1 − αl ) < ∞. Therefore, the absorbance grows
monotonically with the depth zf and can be interpreted as cumulative distribution function of the
finite measure

Z :=
n−1∑
l=0

− ln(1 − αl ) · δzl

with one Dirac-δ at each surface depth. To store the transmittance, we need a compact representation
of this measure. Moment shadow mapping and related techniques provide just that.
We choose a moment-generating function b : [−1, 1] → Rm+1, e.g. b(z) = (1, z, z2, z3, z4)T as in

moment shadow mapping [Peters and Klein 2015]. Then the transmittance is stored as

b := EZ (b) :=
n−1∑
l=0

− ln(1 − αl ) · b(zl ).

A simple rendering pass with additive blending suffices to write this vector into render targets with
a total ofm + 1 channels.

The zeroth moment stores the total absorbance

b0 =
n−1∑
l=0

− ln(1 − αl ).
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(a) Transmittance (b) Absorbance with reconstructions

Fig. 2. Transmittance and absorbance for a view ray that passes through a particle cloud and four transparent
surfaces. The cumulative distribution function of the absorbance is reconstructed from six power moments
using different amounts of overestimation.

Thus, exp(−b0) is the total transmittance which has to be applied as factor to the radiance of opaque
surfaces during final compositing. Since it may take any non-negative value, we need to store it
explicitly. This is different from moment shadow mapping where Z is a probability distribution
and b0 = 1 needs not be stored.

3.2 Reconstructing the Transmittance
The reconstruction algorithm at the heart of moment shadow mapping offers a sharp lower bound
to the cumulative distribution function of Z based on b [Peters and Klein 2015, Algorithm 2]. Strictly
speaking, this algorithm assumes b0 = 1 but we can always divide b by b0 and then multiply the
end result by b0. We provide more details in Sections 4 and 5.

With the same methods, an upper bound to the cumulative distribution function can be computed
[Peters et al. 2017, Section 5.3]. Using the lower bound guarantees that surfaces do not occlude
themselves but at the cost of systematic overestimation of visibility. We found that the overall
result is more compelling when interpolating towards the upper bound using a weight around
β = 0.25 (see Figure 2b).

Hence, we obtain an approximation A(zf ,b, β) to the absorbance at any depth zf ∈ [−1, 1]. From
that, we compute the transmittance

T (zf ,b, β) := exp(−A(zf ,b, β)).

In our second additive rendering pass, we render and shade all transparent surfaces, compute the
absorbance and composite them into an off-screen render target in accordance with Equation (1):

n−1∑
l=0

Ll · αl ·T (zf ,b, β)

For pixels with b0 = 0, the fragments have no opacity at all and it is best to do an early return.

3.3 Warping Depth
While it does not make a difference in theory, numerical errors degrade the quality of moment-based
reconstructions in practice when the depth range is unreasonably large [Peters and Klein 2015].
Therefore, we compute a conservative bounding sphere around all transparent geometry in the
scene, derive a reasonably sharp depth range [zmin, zmax] from this sphere and map it to [−1, 1].
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Note that zmin > 0 thanks to the near clipping plane. This way, the bounds never change abruptly
and results are temporally coherent.
Naturally, nearby transparent surfaces tend to be more visible than distant surfaces because

transmittance always decreases monotonically. In consequence, we additionally allocate more
precision for nearby geometry by warping depth logarithmically. Doing so consistently improves
the visual quality. Thus, the depth values z that enter all moment-based computations are computed
from linear view-space depth values zv ∈ R by

z :=
ln zv − ln zmin

ln zmax − ln zmin
· 2 − 1 ∈ [−1, 1].

3.4 Final Compositing
After the opaque pass and the two additive passes for transparent geometry, we have two render
targets showing opaque and transparent surfaces, respectively. The obvious way to composite
them is to multiply the opaque render target by the total transmittance exp(−b0) and to add the
transparent render target. If the outgoing radiance of the opaque surface is Ln , this leads to the end
result

exp(−b0) · Ln +
n−1∑
l=0

Ll · αl ·T (zf ,b, β).

However, there is a problem with this approach; it is not energy conserving. The total weight
of all radiances combined is not necessarily one. While the total transmittance is accurate, the
reconstructed transmittance for the individual surfaces may be off and these errors need not cancel
out. To get a less biased result, we explicitly renormalize as in weighted blended OIT [McGuire and
Bavoil 2013]:

exp(−b0) · Ln +
1 − exp(−b0)∑n−1

l=0 αl ·T (zf ,b, β)
·

n−1∑
l=0

Ll · αl ·T (zf ,b, β) (2)

The normalization value in the denominator is simply written to the alpha channel during the
second additive rendering pass.
This renormalization imposes almost no additional cost. In some cases, the estimate for the

transmittance on individual surfaces becomes less accurate but overall artifacts are diminished (see
Figure 7).

4 POWER MOMENTS
Thus far, we have viewed reconstruction of the cumulative distribution function of the absorbance
Z from the vector of moments b ∈ Rm+1 as a black box. In the following, we will provide more
details on this step and discuss a broad range of alternatives offering different tradeoffs.

4.1 Four or Six Power Moments
When we usem power moments, i.e.

b(z) = (1, z, z2, . . . , zm)T

withm even, Algorithm 1 provides the desired reconstruction [Peters et al. 2017]. Conceptually, it
deals with a specific depth distribution S , which consists of Dirac-δ distributions at the computed
depths z0, . . . , zm

2
∈ R. This depth distribution realizes the given power moments exactly, i.e.

ES (b) = b [Peters and Klein 2015, Proposition 10]. At the same time, the values of its cumulative
distribution function around zf = z0 are extremal among all such depth distributions [Peters and
Klein 2015, Proposition 8]. Therefore, it provides access to the desired lower and upper bounds for
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Algorithm 1 Reconstruction from power moments [Peters et al. 2017].
Input: Moment countm ∈ N even, power moments bj = EZ (z j ) ∈ R for all j ∈ {0, . . . ,m} and
z(z) := z, fragment depth zf ∈ [−1, 1], overestimation weight β ∈ [0, 1].
Output: The approximation A(zf ,b, β).

• Set z0 := zf and v0 := β ,
• Use a Cholesky decomposition to solve for q ∈ R

m
2 +1:

©«
b0 b1 · · · bm

2

b1 b2 . .
.

bm
2 +1

... . .
.
. .
. ...

bm
2

bm
2 +1 · · · bm

ª®®®®®¬
· q =

©«
1
z10
...

z
m
2
0

ª®®®®¬
• Solve qm

2
· z

m
2 + · · · + q0 · z

0 = 0 for z to obtain roots z1, . . . , zm
2
∈ R,

• For 1 ≤ l ≤ m
2 set vl := 1 if zl < z0 and vl := 0 otherwise,

• Use divided differences to solve a Vandermonde system for u ∈ R
m
2 +1:

©«
1 z10 · · · z

m
2
0

...
...
. . .

...

1 z1m
2

· · · z
m
2
m
2

ª®®®¬ · u =
©«
v0
...

vm
2

ª®®¬ ,
• Return

∑m
2
j=0 bj · uj .

A(zf ). Since our available knowledge does not preclude the case S = Z , these bounds are the best
attainable bounds.
In practice, numerical stability is paramount to avoid artifacts. Thus, it is important to use a

robust polynomial solver and the stated linear solvers. Form = 4 andm = 6, we rely on available
robust implementations from prior work [Peters et al. 2017].
Application of these implementations in the pipeline outlined above is most straightforward

when using one single-precision float per moment. Since Algorithm 1 is usually implemented
for the special case b0 = 1, we input b

b0
and multiply the end result by b0. The biasing, which

compensates for rounding errors, is also applied to this normalized vector. For six power moments
stored in single precision, we need to redo the optimization of the biasing strategy [Peters et al.
2017] since this variant has not been used before. Details on appropriate biasing strategies for all
discussed techniques are given in the supplementary.
As with moment shadow mapping, it is worthwhile to use a quantization with only 16 bits per

moment to reduce bandwidth requirements. However, the existing quantization schemes exploit
b0 = 1. Since this assumption fails in the present application, values may end up being out of
range. Our solution is to store the normalized moments b1

b0
, . . . , bmb0 using the existing quantization

schemes [Peters et al. 2017] while storing b0 separately. Due to the greater dynamic range of b0, a
half-precision float works best.

An implementation of the additive blending then requires that the stored vector is multiplied by
b0 before addition and divided by the updated b0 before storage. This read-modify-write operation
still does not require a deterministic pipeline order but on current hardware corresponding features
offer the most practical implementation.
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(a) Three surfaces (b) Four surfaces

Fig. 3. Moment-based reconstructions in ideal cases with β = 0.25 and the recommended biasing for single-
precision floats. In theory, the techniques could produce perfect reconstructions here. In practice, the biasing
that is needed to compensate rounding errors degrades the reconstruction quality. For power moments, this
problem is much greater than for trigonometric moments.

A problem with such an additive render pass to a 16-bit render target is that rounding errors
accumulate as the number of fragments increases. The usual biasing strategies are still an effective
countermeasure but the required strength of the bias is no longer scene independent. Nonetheless,
appropriate bias values are easy to find. Even for the complicated scene in Figure 1, the usual bias
values did not need to be increased by more than one order of magnitude.

We also tried using non-linear quantization [Peters 2017] to benefit from reduced rounding
errors without greater bandwidth requirements. However, the cost added to the read-modify-write
operation through non-linear dequantization and quantization turned out to be too big to be
justified in this setting.

4.2 Eight Power Moments
Prior work in real-time graphics has never used more than six power moments. Since transparent
surfaces may occur in very complicated configurations, we now investigate the extension tom = 8
for the sake of a more expensive but also more powerful technique. Concerning the linear solvers,
the recommendations in Algorithm 1 still work well form = 8.
The remaining challenge is to find a robust polynomial solver for quartic polynomials with

four real roots. After trying a variety of iterative, closed-form and hybrid solvers, we settled for
a closed-form solution [Neumark 1965] which gave the most robust results efficiently. Internally,
this solver uses the root of smallest magnitude of the resolvent cubic, which we compute using
another robust solver [Blinn 2007]. It then factorizes the quartic into two quadratic polynomials.
Their roots are the end result. To avoid numerical cancellations, two different approaches to this
factorization are used adaptively [Herbison-Evans 1995].

Finally, we need to derive new quantization transforms for 16-bit quantization and optimal biasing
strategies.We compute these exactly as in the casem = 6 [Peters et al. 2017] and provide the resulting
matrices and vectors in the supplementary among with complete code for the reconstruction
algorithm.
In theory, eight power moments capture complicated distributions significantly better than

six. Distributions with up to four transparent surfaces can be reconstructed perfectly. In practice,
rounding errors are a major concern. Even with single precision floats, these errors necessitate a
biasing that diminishes the benefit of the greater number of power moments (see Figure 3).
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(a) Construction of the approximations (b) Effect of the wrapping zone

Fig. 4. Various reconstructions of a depth distribution using three trigonometric moments. To the left, we
show how the upper and lower approximation are formed from the representation S . To the right, we show
how a larger wrapping zone smoothes the reconstruction for β = 0.25.

5 TRIGONOMETRIC MOMENTS
Moment shadow mapping has been introduced alongside an alternative called trigonometric
moment shadow mapping [Peters and Klein 2015], which uses Fourier basis functions as moment-
generating function b. It has proven to be much less vulnerable to rounding errors. However,
the arithmetic overhead is prohibitive because computing the sharp lower bound is far more
complicated.

5.1 Approximate Bounds
For OIT, having a lower bound is not crucial. In fact, we explicitly interpolate towards the upper
bound to reduce the systematic error. We exploit this for a far more efficient algorithm. The
idea is to use the same principles as in Algorithm 1 to find a sparse depth distribution with the
given trigonometric moments and a Dirac-δ at zf . The cumulative distribution function of this
reconstruction at zf then provides approximations to the original cumulative distribution function
(see Figure 4a).

Algorithm 2 implements this approach. Every single step is analogous to Algorithm 1. Rather
than dealing with real power moments, it takes complex trigonometric moments. Our depth range
is associated with the complex unit circle through

x(z) := exp
(
2 · π · i ·

z + 1
2

)
∈ C. (3)

Our moment generating function consists of powers of x , i.e. b(z) = (1,x1(z), . . . ,xm(z))T. In other
words, b(z) is a vector of complex Fourier basis functions.

Implicitly, Algorithm 2 computes the unique depth distribution S :=
∑m
l=0wl · δzl with zl :=

x−1(xl ) andw0, . . . ,wm > 0 such that all given trigonometric moments match exactly [Peters and
Klein 2015, Propositions 15 and 16], i.e. for all j ∈ {0, . . . ,m}

ES (x
j ) =

m∑
l=0

wl · x
j
l = bj .

This is one of infinitely many distributions representing these trigonometric moments. By
construction, it has a non-zero weightw0 at zf . The last three steps of Algorithm 2 evaluatewT · v ,
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Algorithm 2 Reconstruction from trigonometric moments.
Input: Moment countm ∈ N, trigonometric moments bj = EZ (x j ) ∈ C for all j ∈ {0, . . . ,m} (see
Equation (3) or (5)), fragment depth zf ∈ [−1, 1], overestimation weight β ∈ [0, 1].
Output: The approximation A(zf ,b, β).

• Set x0 := x(zf ) ∈ C (see Equation (3) or (5)) and v0 := β ,
• Use a Cholesky decomposition to solve for q ∈ Cm+1:

©«
b0 b1 · · · bm

b1 b0
. . .

...
...
. . .

. . . b1
bm · · · b1 b0

ª®®®®®¬
· q =

©«
1
x10
...

x
m
2
0

ª®®®®¬
,

• Solve qm · xm + · · · + q0 · x
0 = 0 for x to obtain roots x1, . . . ,xm ∈ C,

• For 1 ≤ l ≤ m set vl := v(xl ,x0) (see Equation (4) or (6)),
• Use divided differences to solve a Vandermonde system for u ∈ Cm+1:

©«
1 x10 · · · xm0
...
...
. . .

...
1 x1m · · · xmm

ª®®¬ · u =
©«
v0
...

vm

ª®®¬ ,
• Return bT · u.

which is the cumulative distribution function at zf [Peters et al. 2017, Section 5.4.2]. To this end,
the contribution of each point needs to be determined, which is given by

vl = v(xl ,x0) :=

{
1 if x−1(xl ) < x−1(x0),
0 otherwise.

(4)

The parameter v0 = β determines the contribution of the weightw0 at zf . When it is zero, the
result will be closer to a lower bound, when it is one, it will be closer to an upper bound. Either
way, we do not get proper bounds but at least we have some control over whether we under- or
overestimate (see Figure 4a).

5.2 The Wrapping Zone
While the lack of proper bounds is unproblematic by itself, it does have some negative consequences.
Most notably, the reconstruction is not continuous. This problem stems from a discontinuity in
v(xl ,x0) for xl = 1 where depth values wrap around. It also has a discontinuity for xl = x0 but this
case cannot occur [Kreı̆n and Nudel’man 1977, Theorem IV.4.2]. Since the discontinuities are easy
to spot in the results, we address the issue by modifyingv(xl ,x0).
We introduce the wrapping zone angle 0 < θ ≪ 2 · π controlling the size of a region that does

not correspond to any depth values. It is used solely to wrap depth values around in a continuous
fashion. Hence, we redefine

x(z) := exp
(
(2 · π − θ ) · i ·

z + 1
2

)
. (5)

As we changev(xl ,x0), we note that it is inefficient to evaluate x−1 because it involves inverse
trigonometric functions. We replace it by a piecewise linear function that is monotonic in the same
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sense, namely

ψ(x) :=


−ℜx + ℑx if ℜx ≥ 0, ℑx ≥ 0,
2 −ℜx − ℑx if ℜx < 0, ℑx ≥ 0,
4 +ℜx − ℑx if ℜx < 0, ℑx < 0,
6 +ℜx + ℑx if ℜx ≥ 0, ℑx < 0.

Then continuous factors for our weights can be computed as

v(xl ,x0) :=


1 ifψ(xl ) < ψ(x0),
0 ifψ(x0) ≤ ψ(xl ) ≤ ψ(x(1)),
ψ(xl )−ψ(x (1))

7−ψ(x (1)) otherwise.
(6)

Increasing the size of the wrapping zone θ trades smoothness for depth precision. The reconstruc-
tions are continuous for any θ > 0 but may still change rapidly (see Figure 4b). In our experiments,
we use θ = π

10 .

5.3 Three or Four Trigonometric Moments
For the most part, the implementation of Algorithm 2 is very similar to that of Algorithm 1. The
major difference is that complex numbers replace most real numbers. Therefore,m trigonometric
moments take as much space as 2 ·m power moments but carry a similar amount of information.
In fact, they provide better reconstructions at higher order due to greater stability. However, the
complex operations require more arithmetic instructions. With two trigonometric moments, the
benefit from the improved stability is too small to justify this cost.

Once more, the remaining challenge for stable implementations at higher order is the polynomial
solver. Since all roots x1, . . . ,xm are known to lie on the unit circle, the problem is quite well-
behaved. For three trigonometric moments, we started from a naive generalization of Blinn’s solver
[Blinn 2007] to the complex case without any branches and got only few artifacts. Internally,
this solver computes a root of a quadratic polynomial. To eliminate the remaining artifacts, it
suffices to avoid cancellation by picking the root of the quadratic with greater magnitude. A similar
generalization of Neumark’s solver [Neumark 1965] to the complex case works robustly if the
chosen root of the depressed cubic is not the one with least magnitude.

Biasing is implemented as in trigonometric moment shadow mapping [Peters and Klein 2015] by
multiplying b1, . . . ,bm by an appropriate constant 1 − α (see supplementary). Since trigonometric
moments are less vulnerable to rounding errors, there is no need for a quantization transform when
storing them in 16 bits each.

6 SHADOWS
While OIT deals with primary visibility, rendering shadows corresponds to secondary visibility.
In both cases, the core problem is computation of the transmittance. Thus, most techniques for
OIT may be used for shadows and vice versa. For example, stochastic transparency [Enderton
et al. 2011] and colored stochastic shadow maps [McGuire and Enderton 2011] use the same basic
principle. We will now use our moment-based OIT for shadows. This leads us to the moment-based
analog of Fourier opacity mapping [Jansen and Bavoil 2010].

As with OIT, we handle opaque and transparent shadow casters separately. For opaque shadow
casters, any shadow technique may be used. We choose moment shadow mapping [Peters and Klein
2015]. Then an additive pass renders transparent shadow casters to a separate moment shadow
map, thus accumulating a representation of absorbance as described in Section 3.1. Except for the
different coordinate transform, this works in exactly the same manner and any choice of moments
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in Sections 4 and 5 is valid. Our implementation still determines the depth range from a bounding
sphere but depth values are defined linearly. In any case, the zeroth moment needs to be stored. It
represents the transmittance to infinite depth. Storing it explicitly is benefitial to the quality of
shadows on distant receivers such as a ground plane.

To diminish aliasing, our implementation filters both moment shadow maps with a 9×9 Gaussian
and uses bilinear interpolation. This works fine when the moments are stored in single-precision
floats but causes problems at 16 bits per moment. Since division is non-linear, the normalized vectors
of moments b1

b0
, . . . , bmb0 should not be filtered linearly. Doing so may give acceptable results in

some cases but leads to obvious artifacts when the filter region includes texels without transparent
surfaces where b0 vanishes. For proper filtering, the normalization must be undone before each
filtering operation. Our implementation ended up being slower than the one using single-precision
floats. Hence, we discard 16-bit quantization in this context but note that specialized compute
shaders should make it practical [Peters 2017].

To shade a fragment, we first compute the filtered transmittance through opaque shadow casters
as usual. Then we perform a reconstruction of the transmittance through transparent shadow
casters as explained in Sections 3.2, 4 and 5. To combine both results, we assume that the latter
transmittance is constant within the filter region. Under this assumption, the appropriate combina-
tion operator is simple multiplication. Finally, we multiply the incoming irradiance from the light
by this transmittance product and proceed with shading.
The assumption of constant transmittance fails quickly when transparent shadow casters are

discarded using the depth buffer of opaque shadow casters. This leads to leaking whenever the
silhouette of an opaque shadow caster shadows transparent shadow casters. This artifact is easily
avoided by not using the depth buffer for transparent shadow casters.

7 RESULTS
We evaluate with a forward renderer using Direct3D 11.3 and compare against adaptive transparency
[Salvi et al. 2011], multi-layer alpha blending [Salvi and Vaidyanathan 2014] and weighted blended
OIT [McGuire and Bavoil 2013]. Whenever needed for a deterministic pipeline order, we use
rasterizer ordered views. All techniques, including multi-layer alpha blending, render colors to
render targets with 16 bits per channel. Our implementation of weighted blended OIT uses the
same weighting function as phenomenological transparency [McGuire and Mara 2017].

We compare our shadows to Fourier opacity mapping [Jansen and Bavoil 2010] but do not use this
technique for primary visibility since prior work has shown that the quality would be poor [Salvi
et al. 2010]. For moment-based OIT, we always use an overestimation weight of β = 0.25. Unless
stated otherwise, we render opaque shadows using a 64-bit moment shadow map and transparent
shadows using six power moments stored in 224 bits. The shadow map resolution is 10242.

7.1 Quality of OIT
Figures 1 and 5 compare a selection of techniques on a complex scene that combines large particle
clouds with a complicated transparent model of a ship. The particles are simply camera-oriented
billboards. While multi-layer alpha blending [Salvi and Vaidyanathan 2014] works relatively well for
the ship, it fails to accomplish proper occlusion through the particles and produces discontinuities
along particle boundaries. It can be made to work well with six layers by sorting all particles and
rendering them after the ship. Results of adaptive transparency [Salvi et al. 2011] are worse and
not shown here. Weighted blended OIT [McGuire and Bavoil 2013] yields smooth results but does
not convey the mutual occlusion of the fog and the ship correctly.
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(a) Weighted blended OIT, 5.5 ms (b) Moment-based OIT, ours,
4 power moments, 80 bits, 10 ms

(c) Ground truth, depth peeling,
123 ms

Fig. 5. Two additional results and the ground truth for the scene in Figure 1.

(a) Adaptive transparency, 4 nodes (b) Weighted blended OIT (c) Ground truth

(d) Multi-layer alpha blending,
4 layers

(e) Moment-based OIT, ours,
4 power moments, 80 bits

(f) Moment-based OIT, ours,
6 power moments, 112 bits

Fig. 6. A scene with 17 transparent teapots standing in a row on the ground in Sponza. The curtains are
transparent as well. Note how the overdraw increases towards the center.

Our moment-based OIT produces a smooth result as well while capturing occlusions far more
accurately. With four power moments, results are plausible overall but some surfaces appear to be
occluded by nearby surfaces in the background. This is particularly true around the main mast.
Using six power moments, results are close to the ground truth almost everywhere. Only in places
where surfaces with substantially different colors are close, there is some leaking. These errors
vanish almost entirely when using three trigonometric moments stored in single precision. To
demonstrate the excellent temporal stability of our continuously defined reconstruction, we show
an animated view of this scene in the supplementary video.
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(a) Without renormalization (b) With renormalization

Fig. 7. A red teapot occluding alpha mapped foliage using moment-based OIT with six power moments.
Without renormalization, the transparent parts of the foliage are too dark. Renormalization removes this
artifact but propagates part of the error to the teapot.

Figure 6 shows a less challenging test case. Multi-layer alpha blending performs well except for
some artifacts where a curtain is improperly occluded by three teapots. Adaptive transparency
shares similar artifacts but additionally underestimates the transmittance in the center region
where many teapots overlap. Weighted blended OIT generally lets the curtains and the hindmost
teapots appear too visible. With our moment-based OIT using four power moments, the visibility on
some of the curtains is overestimated slightly but the result is plausible. Using six power moments
improves on this situation further.
In Figure 6, we use an alpha test without blending for the foliage. Using our moment-based

OIT triggers a failure case that we show in Figure 7. Through the overestimation of β = 0.25,
the transparent parts of the foliage end up being too dark. Next to the opaque parts, this is an
obvious artifact. By default we use the renormalization described in Equation (2), which removes
this artifact. However, it may end up propagating part of the error to another transparent surface.
Weighted blended OIT performs a similar renormalization leading to similar artifacts. Overall,
our technique is not ideal for rapidly changing alpha maps. Hashed alpha testing is specifically
designed for this case and can step in at little cost [Wyman and McGuire 2017].

Unlike most other techniques, our approach is free of depth comparisons that lead to discontinu-
ities in the transmittance function. In many cases, this is a benefit because it leads to smooth and
stable results. However, it turns into a problem when dealing with intersecting geometry as shown
in Figure 8. All techniques storing moments in 16 bits fail to produce a sharp line where the spheres
intersect. Though, using trigonometric moments improves sharpness. With four trigonometric
moments stored in single precision floats, the intersection of two spheres becomes sharp but even
this variant blurs the intersection of three spheres. Weighted blended OIT shares this artifact but
multi-layer alpha blending with two layers or adaptive transparency with four nodes obtain a
perfect result. Note that we artificially enlarged the depth range for this example to be more than
ten times the sphere radius.

7.2 Quality of Shadows
Like all results shown above, Figure 1 uses moment-based OIT shadows with six power moments
stored in 112 bits for the transparent shadows. The combination of particle clouds and shadows
leads to single scattering, the particles shadow themselves and the ground receives partial shadow
as expected. Some light leaking does occur but for transparent shadows it is less objectionable than
for opaque shadows [McGuire and Mara 2017].
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(a) 4 power moments,
80 bits

(b) 3 trigonometric
moments, 112 bits

(c) 4 trigonometric
moments, 144 bits

(d) Weighted blended
OIT

(e) 6 power moments,
224 bits

(f) 3 trigonometric
moments, 224 bits

(g) 4 trigonometric
moments, 288 bits

(h) Ground truth

Fig. 8. Three intersecting spheres rendered with various techniques. Note how different choices of moments
and quantization schemes yield different amounts of blur.

(a) Fourier opacity mapping, 7 real coefficients (b) Fourier opacity mapping, 15 real coefficients

(c) Moment-based OIT shadows, ours,
4 power moments, 160 bits

(d) Moment-based OIT shadows, ours,
6 power moments, 224 bits

Fig. 9. A transparent particle cloud rendered with shadows. The left part contains a transparent, red disk to
obtain a sharp, volumetric shadow. Note how Fourier opacity mapping fails to produce a hard onset for this
shadow.
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(a) Teapots (b) Ship

Fig. 10. The scenes used for OIT run time measurements. They consist of 3.6 · 105 and 9.5 · 105 transparent
triangles, respectively. At a resolution of 1920 × 1080, these views show 9.4 · 106 and 18.7 · 106 transparent
fragments, respectively.

Figure 9 compares our approach for moment-based OIT shadows to Fourier opacity mapping
[Jansen and Bavoil 2010]. While the other results of our technique use β = 0 to avoid wrong
self-shadowing on transparent surfaces, this scene uses β = 0.5 for a more meaningful comparison.
Overall, this scene plays to the advantage of Fourier opacity mapping because the depth range is
small and the transmittance function is changing smoothly within the particle cloud. Nonetheless,
the shadows are smeared out along the light direction. The directly lit top of the cloud is already
slightly darkened. To make this effect more visible, we placed a red disk with 94% opacity in the
left part of the cloud. With moment-based OIT shadows, we obtain a reasonably hard onset for the
shadow while the shadow is clearly visible above the disk when using Fourier opacity mapping.
Except for a slight reduction in wrong self-shadowing with six power moments, results for the

two variants of our technique are similar in this example. Though with β = 0, the complicated
depth distributions arising from transparent surfaces cause a lot of leaking when using four power
moments. In static images, these artifacts are hard to spot but in animated sequences they can be
obvious as demonstrated in the supplementary video. We recommend using six power moments for
improved robustness. The extra cost for the use of trigonometric moments is hard to justify because
with monochromatic shadows artifacts are less noticeable than with OIT on colored surfaces.

7.3 Run Time
We measure run times on a computer with an NVIDIA GeForce GTX 1080 Ti and an Intel Core
i7-8700K running Windows 10. To evaluate OIT techniques, we use the teapots and a version of
the ship with smaller particle clouds (see Figure 10). With adaptive transparency and multi-layer
alpha blending, the memory layout is critical for a good run time. After some experimentation,
we decided to index the data within 16 × 16 tiles through Morton codes to improve cache locality.
Depth values for these techniques are stored in 16-bit fixed-point numbers using the warped depth
from Section 3.3. Table 1 lists the key results. Additional timings are provided in the supplementary
document.
Adaptive transparency with four nodes takes slightly more time than moment-based OIT with

six power moments in 112 bits. Timings for multi-layer alpha blending with four layers are slightly
longer than for moment-based OIT with three trigonometric moments in 224 bits. With two layers,
the run time is inbetween the two variants with four power moments. In all three cases, our
techniques clearly offer the higher quality, although this would not be true for all scenes (see e.g.
Figure 8). Weighted blended OIT is significantly faster than all of our techniques but much less
accurate.
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Table 1. Run times in ms for the two scenes in Figure 10. Differential timings are full frame times where
the frame time for rendering the scenes through alpha blending without any sorting has been subtracted.
Adaptive transparency and moment-based OIT use a third pass for compositing that takes 0.06 ms. We also
list the required additional memory in bits per pixel, not counting color buffers for accumulation.

OIT Alpha Adaptive Multi-layer Weighted
technique blend transparency alpha blend blended

Nodes/layers - 4 2 4 -
Memory 0 128 160 320 8

Te
ap
ot
s Pass 1 0.79 1.6 2.0 3.4 0.85

Pass 2 - 0.94 0.13 0.22 0.07
Diff. 0.0 1.8 1.4 2.8 0.10

Sh
ip

Pass 1 1.4 3.0 3.9 6.6 1.6
Pass 2 - 1.8 0.11 0.20 0.06
Diff 0.0 3.3 2.6 5.3 0.16

OIT technique Moment-based OIT (ours)
Moment type Power Trigonometric
Moment count 4 6 3 4

Memory 80 160 112 224 112 224 144 288

Te
ap
ot
s Pass 1 0.94 1.2 1.2 1.6 1.2 1.6 1.3 1.9

Pass 2 1.0 1.0 1.1 1.2 1.7 1.7 2.4 2.4
Diff. 1.2 1.5 1.6 2.1 2.2 2.6 3.0 3.6

Sh
ip

Pass 1 2.0 2.3 2.3 3.1 2.3 3.1 2.9 3.6
Pass 2 1.8 1.8 2.2 2.2 3.2 3.2 4.5 4.8
Diff. 2.3 2.7 3.1 3.8 4.2 4.9 5.7 6.8

Note that, unlike multi-layer alpha blending and weighted blended OIT, our techniques require
two transparent passes. In our implementation, the entire geometry pipeline runs twice. This
overhead could be reduced by reusing transformed vertex data.
Comparing the variants of our technique, we note that their run times are perfectly sorted the

way they are listed. This progression nicely matches the increases in quality, with the exception of
four trigonometric moments stored in 144 bits. Four or six power moments or three trigonometric
moments offer sensible tradeoffs. The quality gains from using four trigonometric moments are
relatively small, so the additional cost might be hard to justify. In the supplementary document,
we demonstrate that results with eight power moments are slightly better than with six power
moments at a cost close to that of three trigonometric moments.
The timings for the second pass of our techniques appear to be limited by compute since they

are independent of the used quantization. This cost rises substantially if we use more moments
or trigonometric moments. On the other hand, timings for the first pass depend strongly on the
quantization, which suggests that it is bandwidth limited. For adaptive transparency, the second
pass is relatively inexpensive whereas the first pass has a greater cost due to more arithmetic work.
Table 2 lists frame times for rendering shadows of transparent surfaces. While Fourier opacity

mapping is always faster with 7 real coefficients, the variant with 15 coefficients often falls inbetween
our techniques with four or six power moments. In spite of the lower bandwidth usage, generating
a shadow map with six power moments takes more time than a Fourier opacity map with 15
coefficients. This appears to be due to a lower throughput for single-precision floats compared to
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Table 2. Run times in ms at two shadow map resolutions for the ship in Figure 10 and the cloud in Figure 9.
We list the cost of rendering the shadow map, filtering it and rendering the shaded scene using moment-based
OIT with six power moments in 112 bits for primary visibility. Additionally, we provide a differential frame
time where the cost for rendering without shadows of transparent surfaces has been subtracted (3.9 ms for
the ship and 18.1 ms for the cloud). We also list the required additional memory in bits per shadow map texel.

Shadow Fourier opacity Moment-based
technique mapping OIT shadows (ours)
Scene Ship Cloud Ship Cloud

Coefficients 7 15 7 15 1+4 1+6 1+4 1+6
Memory 112 240 112 240 160 224 160 224

10
24
2 Render 0.42 0.46 1.6 3.1 0.80 0.83 2.0 2.8

Filter 0.07 0.16 0.08 0.15 0.15 0.18 0.16 0.21
Shade 1.8 1.9 8.6 9.5 1.9 2.3 9.1 11.4
Diff. 1.0 1.3 4.7 7.4 1.5 2.0 5.8 8.8

20
48
2 Render 0.54 0.71 6.4 11.4 0.90 1.0 9.6 13.1

Filter 0.28 0.53 0.30 0.55 0.56 0.69 0.62 0.80
Shade 1.8 1.9 8.7 11.3 1.9 2.2 9.2 11.9
Diff. 1.4 1.9 9.4 17.9 2.0 2.7 13.7 20.0

half-precision floats on our test hardware. The cost for shading tends to be slightly higher with our
moment-based approach, which is to be expected given the greater arithmetic workload. However,
the quality improvements observed above justify this greater cost.

8 CONCLUSIONS
Moment-based OIT complements existing OIT techniques in an interesting and useful way. Like
weighted blended OIT, it is fully order-independent and provides smooth results when the opacities
are smooth. However, it uses actual data to represent the per-pixel transmittance, thus providing a
far more accurate result. Its ability to deal with complicated transparent models and participating
media simultaneously is unmatched by earlier techniques. At the same time, it can compete with
these techniques in terms of run time. In times where the compute capability of GPUs outruns their
bandwidth [Olsson et al. 2015], the greater number of arithmetic instructions is a small concern.

With six possible choices for the moments and two quantization schemes for each of them, there
is a host of techniques to choose from. While four power moments provide an unobjectionable
and inexpensive approximation in moderately challenging cases, three trigonometric moments
stored in single precision handle even the most challenging cases faithfully (see Figure 1). Six power
moments offer a good tradeoff between quality and cost.
The guaranteed smoothness of the results stems from the continuous representation of the

transmittance. This property is very desirable but harms our ability to render intersecting geometry
and might pose a problem for scenes with extremely large depth range. The logarithmically warped
depth is an effective countermeasure for the latter issue.

Our new techniques for shadows surpass the quality of Fourier opacity mapping but at increased
cost. Future work may push for further optimizations.
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