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Fig. 1. Spatially varying iridescence of a soap bubble evolving over time (left to right). The complex interplay of soap and water induces a complex flow on the
film surface, resulting in an ever changing distribution of film thickness and hence a highly dynamic iridescent texture. This image was simulated using the
method described in this paper, and path-traced in Mitsuba [Jakob 2010] using a custom shader under environment lighting.

Soap bubbles are widely appreciated for their fragile nature and their colorful
appearance. The natural sciences and, in extension, computer graphics, have
comprehensively studied the mechanical behavior of films and foams, as
well as the optical properties of thin liquid layers. In this paper, we focus on
the dynamics of material flow within the soap film, which results in fasci-
nating, extremely detailed patterns. This flow is characterized by a complex
coupling between surfactant concentration and Marangoni surface tension.
We propose a novel chemomechanical simulation framework rooted in lu-
brication theory, which makes use of a custom semi-Lagrangian advection
solver to enable the simulation of soap film dynamics on spherical bubbles
both in free flow as well as under body forces such as gravity or external
air flow. By comparing our simulated outcomes to videos of real-world soap
bubbles recorded in a studio environment, we show that our framework, for
the first time, closely recreates a wide range of dynamic effects that are also
observed in experiment.
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1 MOTIVATION
The beauty of soap films and bubbles is of great appeal to people of
all ages and cultures, and the scientific community is no exception.

This work was supported by the European Research Council under ERC starting grant
“ECHO”, the National Science Foundation (CAREER IIS-1943199 and CCF-1813624) and
the Department of Energy (ORNL 4000171342).
Authors’ e-mail addresses: {whuang|iseringhausen|kneiphof}@cs.uni-bonn.de,
{ziyinq|cffjiang}@seas.upenn.edu, hullin@cs.uni-bonn.de.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3386569.3392094.

In the computer graphics community, it is now widely understood
how films, bubbles and foams form, evolve and break. On the ren-
dering side, it has become possible to recreate their characteristic
iridescent appearance in physically based renderers. The main pa-
rameter governing this appearance, the thickness of the film, has so
far only been driven using ad-hoc noise textures [Glassner 2000],
or was assumed to be constant. The resulting renderings appear
largely plausible but static, as they lack the rich dynamics known
from real-world soap films.
With this paper, we aim to close this gap in order to achieve

greater realism. We do so by contributing a chemomechanical frame-
work targeted specifically at simulating the rich and detailed mi-
croscopic flow on spherical soap bubbles. Our framework employs
a leading-order approximation for the soap film dynamics devel-
oped by [Chomaz 2001; Ida and Miksis 1998a]. A soap bubble is
modeled as a two-dimensional flow on a static spherical surface
with two associated scalar fields: the film thickness and the soap
concentration. We are able to show that this state-of-the-art model,
paired with a custom solver, is capable of expressing the intricate
flows found on real-world soap bubbles (Figure 1) under the mu-
tual influence of mechanical stress, film thickness and surfactant
concentration as well as body and surface forces like gravity and
air friction. Our simulation is performed on a staggered grid, using
finite differences in space and time. An advection scheme based on
BiMocq2 [Qu et al. 2019] minimizes numerical dissipation in order
to prevent fine details from washing out over time. The resulting
thickness maps are presented in real time using a custom, very
efficient polarization-aware spectral rendering scheme.
Besides the underlying physical model, our framework is enabled
by the following key contributions:
• We propose a novel advection scheme for vector and scalar quan-
tities in spherical coordinates. Our scheme, which constructs a
local coordinate frame aligned with the direction of the flow, is
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unconditionally stable and maintains continuous behavior even
near and across the poles.

• We propose an implicit update step for the soap concentration,
which avoids solving a stiff indefinite system and enables the use
of significantly larger time steps when applying body forces.

• We introduce a novel real-time shader that is designed to reflect
spectrally and polarization-dependent effects under environment
lighting in a physically accurate manner. This even holds for
contributions which are reflected multiple times in a spherical
bubble.

• We investigate the influence of material parameters, geometric
scale and external forces on the flow, and compare our results to
real-world examples captured under lab conditions.

2 RELATED WORK
With their tendency to evolve into minimal surfaces, soap films
embody a fundamental mathematical and physical principle in a
way that is immediately relatable and fascinating to experts and
laypersons alike. Consequently, they have inspired a large body
of research in mathematics, physics and materials science. Some
mathematicians even went so far as to use them as analog comput-
ers to solve mathematical minimization problems [Isenberg 1978].
Within the computer graphics community, the geometric properties
of minimal surfaces as well as the formation, evolution and destruc-
tion of films, bubbles and foams have inspired a large number of
groundbreaking works [Da et al. 2015; Glassner 2000; Ishida et al.
2017; Iwasaki et al. 2004; Kim et al. 2015; Ďurikovič 2001; Zhu et al.
2014].

Besides their geometry, the beauty of soap bubbles also stems from
their dynamic iridescent patterns. The chaotic mixing, highly non-
linear vortices and turbulence of the fluid flow are not only visually
interesting, but they have also led to a body of scientific work that
is just as varied and colorful as its subject of study. Examples range
from the visualization and study of 2D flow [Gharib and Derango
1989] or using soap bubbles as a small-scale surrogate model for
planetary atmospheres [Meuel et al. 2013; Seychelles et al. 2008]
via the visualization of sound and music [Gaulon et al. 2017] to
using soap films as volatile display surfaces [Ochiai et al. 2013]. In
computer graphics, the simple optical effect behind the characteristic
iridescent colors (thin film interference) has long been understood
and used [Belcour and Barla 2017; Glassner 2000; Iwasaki et al. 2004;
Jaszkowski and Rzeszut 2003; Kneiphof et al. 2019; Smits and Meyer
1992; Sun 2006]. However, the film thickness, which is the main
governing parameter besides the liquid’s refractive index, has rarely
been driven by proper physical simulation. While some works [Saye
and Sethian 2013, 2016; Zhu et al. 2014] have coupled thickness in
their models, they use it more or less as an intermediate variable
that influences the macroscopic motion and serves as a bursting
condition. Most recently, such models have been equipped with
the ability to propagate turbulent flow across Plateau boundaries
[Ishida et al. 2020]. In contrast, our goal is to simulate the rich
and detailed dynamics of the microscopic flow that is observable
through thin film interference, while staying as close as possible to
a state-of-the-art physical model.

We turn to the fluid mechanics and physics communities, where
several comprehensive models for soap film flow have been devised.
Chomaz et al. [2001] derived a highly accurate model for the dynam-
ics of a flat soap film, which is based on the asymptotic lubrication
theory, assuming the thickness of the film is small compared to its
lateral extent. The main contribution of that work is on the construc-
tion of similarities between soap film flows and compressible fluid
flows in a planar, two-dimensional domain. The model provided by
Ida and Miksis [1998a] is in principle capable of expressing general
and time-varying three-dimensional soap films. In order to simulate
flow using their model [Ida and Miksis 1998b], they employ a pseu-
dospectral Chebychev spatial collocation and restrict the solution
to the one-dimensional axisymmetric case.

Since the pioneering work by Foster and Metaxas [1996], physics-
based animation of fluids has been an important topic in computer
graphics due to its wide range of applications for capturing effects
of smoke [Fedkiw et al. 2001], free surface flow [Foster and Fedkiw
2001], or fire [Nguyen et al. 2002]. We note that even lubrication
theory, which forms the foundation of our framework, has at least
once before been employed by other members of the computer
graphics community: [Azencot et al. 2015] used it to simulate the
flow of thin liquid films across solid surfaces. Regarding the geomet-
ric discretization, various possible choices exist [Ando et al. 2015;
Bridson 2015; Ferstl et al. 2016; Ihmsen et al. 2014; Macklin and
Müller 2013]. Grid-based Eulerian simulation of fluid remains popu-
lar and widely adopted due to its superior efficiency and versatility,
despite its well-known problems in numerical diffusion. In graphics,
the semi-Lagrangian advection scheme presented by Stam [1999]
builds the foundation for many more advanced future developments
on Eulerian fluids, including some recent impressively successful
examples [Narain et al. 2019; Qu et al. 2019; Zehnder et al. 2018].
Indeed, the advection equation is such a mathematically simple, yet
numerically challenging equation that consistently draws a lot of
attention. The difficulty is pronounced at an even higher level when
one tries to solve for fluid dynamics on a spherical geometry [Hill
and Henderson 2016; Yang et al. 2019] due to the notoriously diffi-
cult “pole singularity problem” [Randall et al. 2002]. In this paper,
we look into an even more challenging scenario where we need to
efficiently and robustly advect multiple physical quantities related
to the chemomechanical physics on a soap film.

3 PHYSICAL MODEL
The mechanical properties of soap solutions are characterized by
the interplay of water and the soap dissolved in it. Soap molecules,
which have a polar (hydrophobic) and a nonpolar (hydrophilic) end,
tend to settle at the water surface, so that their hydrophobic part
can avoid the contact with water. As a result, the soap concentration
at surfaces is usually much higher than in the bulk fluid. Soap
further acts as a surfactant, i.e., the presence of soap molecules
reduces the surface tension of the fluid. When the distance between
soap molecules at the surface increases, surface tension increases
accordingly. By adding soap to water, it becomes possible to make
bubbles that can last several seconds to minutes, since the surface
tension prevents them from bursting. The resulting structure of soap
films consists of three layers [Couder et al. 1989]: two water-air
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Fig. 2. Cross-section of a soap film (image adapted fromCouder et al. [1989]).
A thin layer of liquid (thickness 2𝜂) is centered around a macroscopically
defined surface. The polar chemistry of surfactant molecules causes them
to concentrate at the liquid-air interface. We assume the number of soap
molecules in the bulk fluid (here marked in gray) to be negligible.
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Fig. 3. Interference color of light reflected by a thin layer of dielectric as
a function of film thickness and incidence angle. Shown are simulations
with a spectral resolution of 5nm for materials of different refractive index,
including the most relevant material for our purpose, water. Colors are
scaled so that white corresponds to a reflectance of 100%. We refer the
reader to established literature [Belcour and Barla 2017; Glassner 2000] on
how to compute these colors. Somewhat counterintuitively, we note that
the optical path difference decreases with increasing angle. Therefore, under
oblique observation it takes a thicker film to produce the same color.

interfaces populated by soap molecules and a thin layer of bulk
fluid in between (Figure 2). The thickness of a soap film is usually
around 1µm, which explains the colorful interference between light
reflected at the two interfaces (Figure 3).

As a soap solution’s refractive index is only weakly affected by the
soap concentration, the two dominant influences on the color of the
film are its large-scale geometry and hence the viewing angle, and
the spatially varying thickness of the fluid layer. For the purpose of
this paper, we assume the shape of the bubble to be fixed. This leaves
material transport within the film manifold as the main source of
texture. In order to recreate the intricate dynamics found in real-
world soap films, we have to understand, model and simulate this
flow.

3.1 Governing equations in 3D
We formulate the fluid flow in terms of the incompressible three-
dimensional Navier-Stokes equations,

𝜕u
𝜕𝑡

+ (u · ∇) u =
1
𝜌
∇ · 𝜎 + f, (1a)

∇ · u = 0, (1b)

where ∇ is the nabla operator in three dimensions, u is the fluid
velocity, 𝜎 is the Cauchy stress tensor [Batchelor 1967, Ch. 1.3], 𝜌

is the mass density, and f represents body accelerations such as
gravity and air friction.
At a film surface, the stress condition applies as [Couder et al.

1989; Ida and Miksis 1998a]

𝜎 · n = (2C𝛾 − 𝑝𝑎)n + ∇s𝛾, (2)

where n is the outward normal vector at the respective surface, 𝑝𝑎
the air pressure, 𝛾 the surface tension, and 2C = −∇ · n is twice the
mean surface curvature. (In general, the values of these quantities
differ between one surface of the film and the other.) The 2D gradient
operator ∇s within the surface acts on a scalar field Φ as

∇𝑠Φ = ∇Φ − n(n · ∇Φ) . (3)

The surface tension depends on the surfactant concentration Γ, i.e.,
the concentration of soap molecules on the surface,

𝛾 = 𝛾𝑎 − 𝛾𝑟 Γ, (4)

where 𝛾𝑎 is the surface tension of pure water, and 𝛾𝑟 accounts for
the elasticity of the film. In the small concentration range, 𝛾𝑟 is
considered to be constant [Couder et al. 1989].

Finally, the surfactant concentration Γ is driven by the advection-
diffusion equation

𝜕Γ

𝜕𝑡
+ ∇𝑠 · (uΓ) = 𝐷𝑠

(
∇𝑠

)2Γ, (5)

with 𝐷𝑠 being the diffusivity for surfactant molecules.

3.2 Thin-film analysis and governing equation on spheres
In the following, we will restrict ourselves to spherical bubbles with
radius 𝑅. For small (centimeter-sized) bubbles, this approximation
is reasonable. It is thus convenient to parameterize the problem in
spherical coordinates (𝑟, 𝜃, 𝜙). The fluid velocity u then reads as

u = (𝑢𝑟 , 𝑢𝜃 , 𝑢𝜙 )⊤ . (6)

We further note that the thickness of a soap bubble is very small
compared to its lateral extent. Using lubrication theory [Oron et al.
1997; Reynolds 1886], we reduce the three-dimensional problem to
a two-dimensional one. The extent of the film along the normal
direction (the thickness) is introduced as a variable rather than a
third dimension of the simulation domain. Suppose the inner and
outer sides of the bubble are symmetrically deformed with half
thickness 𝜂 to either side (Figure 2), then the kinematic condition
(see supplemental material) describing the interaction between the
time and spatially varying film thickness 𝜂 = 𝜂 (𝜃, 𝜙, 𝑡) and the
velocity u at the interface 𝑟 = 𝑅 ± 𝜂 can be written as

𝜕𝜂

𝜕𝑡
+ 𝑢𝜃

𝑅

𝜕𝜂

𝜕𝜃
+

𝑢𝜙

𝑅 sin𝜃
𝜕𝜂

𝜕𝜙
= ±𝑢𝑟 . (7)

With the mean half thickness 𝜂0 and the expansion parameter
𝜖 = 𝜂0/𝑅, we non-dimensionalize the variables as

𝜂 = 𝜂0𝜂
′, 𝑢𝜃 = 𝑈𝑢 ′

𝜃
, 𝑢𝜙 = 𝑈𝑢 ′

𝜙
, 𝜎 =

𝜇𝑈

𝑅
𝜎 ′,

𝑢𝑟 = 𝜖𝑈𝑢 ′𝑟 , 𝑟 = 𝑅 + 𝜖𝑅𝑟 ′, 𝑡 =
𝑅

𝑈
𝑡 ′, Γ = Γ0Γ

′, 𝑝 =
𝜇𝑈

𝑅𝜖
𝑝 ′,

(8)

where 𝑈 is the characteristic velocity and Γ0 is the mean surfactant
concentration. We substitute these variables in Equations (1), (2),
(4), (5) and (7), expand u, Γ and 𝜂 asymptotically with a power
series, and drop all terms except those with leading order of 𝜖 (see
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[Chomaz 2001; Ida and Miksis 1998a] for more details). Note that
our non-dimensionalization is adapted to spherical coordinates and
thus differs from the literature examples. The nabla operator ∇ now
only acts within the surface,

∇ = ∇𝑠 = e𝜃
𝜕

𝜕𝜃
+ 1

sin𝜃
e𝜙

𝜕

𝜕𝜙
, (9)

where e𝜃 and e𝜙 are the respective basis vectors. The governing
equations are thus reduced to

𝐷u′

𝐷𝑡 ′
= −𝑀

𝜂 ′
∇Γ′ + f + Re−1V,

𝐷Γ′

𝐷𝑡 ′
= −Γ′∇ · u′ + 𝐷 ′

𝑠∇2Γ′,

𝐷𝜂 ′

𝐷𝑡 ′
= −𝜂 ′∇ · u′,

(10a)

(10b)

(10c)

where𝑀 = Γ0𝛾𝑟/𝜌𝜂0𝑈
2 is the Marangoni number, Re = 𝑈𝑅𝜌/𝜇 is the

Reynolds number, 𝜇 and 𝜌 are the dynamic viscosity and the mass
density of the soap solution, respectively. The thermodynamic quan-
tity 𝛾𝑟 = 𝑅𝑇 combines gas constant 𝑅 and temperature 𝑇 [Couder
et al. 1989]. 𝐷 ′

𝑠 = 𝐷𝑠/𝑈𝑅 is the scaled diffusivity, and the total deriv-
ative

𝐷

𝐷𝑡 ′
=

𝜕

𝜕𝑡 ′
+ u′ · ∇. (11)

The vector V = (𝑉𝜃 ,𝑉𝜙 )⊤ represents viscous terms including second
order terms as

𝜕2𝑢 ′
𝜃

𝜕𝜙2 ,
𝜕𝜂 ′

𝜕𝜃

𝜕𝑢 ′
𝜃

𝜕𝜃
, . . .

The complete terms are provided in the supplementary document,
Equation (84). For readability, we drop the primes from this point
onward. Further, within the scope of this paper, we assume that
the soap molecules are not diffusive (𝐷𝑠 = 0) and that viscosity
can be neglected. Readers interested in viscous effects may refer to
Section 7.1. In spherical coordinates, the total derivative of u can be
written as

𝐷u
𝐷𝑡

=

(
𝜕𝑢𝜃

𝜕𝑡
+ 𝑢𝜃

𝜕𝑢𝜃

𝜕𝜃
+

𝑢𝜙

sin𝜃
𝜕𝑢𝜃

𝜕𝜙
−

𝑢2
𝜙

tan𝜃

)
e𝜃

+
(
𝜕𝑢𝜙

𝜕𝑡
+ 𝑢𝜃

𝜕𝑢𝜙

𝜕𝜃
+

𝑢𝜙

sin𝜃
𝜕𝑢𝜙

𝜕𝜙
+
𝑢𝜃𝑢𝜙

tan𝜃

)
e𝜙

(12)

and its divergence as

∇ · u =
1

sin𝜃

[
𝜕𝑢𝜙

𝜕𝜙
+ 𝜕

𝜕𝜃
(𝑢𝜃 sin𝜃 )

]
. (13)

The derivatives of a scalar field Φ (which could either be the thick-
ness 𝜂 or the soap concentration Γ), are

∇Φ =

(
𝜕Φ

𝜕𝜃
,

1
sin𝜃

𝜕Φ

𝜕𝜙

)⊤
, (14)

𝐷Φ

𝐷𝑡
=
𝜕Φ

𝜕𝑡
+ 𝑢𝜃

𝜕Φ

𝜕𝜃
+

𝑢𝜙

sin𝜃
𝜕Φ

𝜕𝜙
, (15)

∇2Φ =
1

sin𝜃

[
𝜕

𝜕𝜃

(
sin𝜃

𝜕Φ

𝜕𝜃

)
+ 𝜕

𝜕𝜙

(
1

sin𝜃
𝜕Φ

𝜕𝜙

)]
. (16)

(a) Typical dimensions (b) Soap bubble photograph
Fig. 4. Under the influence of gravity and with surface tension as opposing
force, bubbles assume an equilibrium state where the film thickness gradu-
ally increases from top to bottom. This is reflected by the horizontal fringe
pattern observed on real-world bubbles.

There are mainly two contributions for the evolution of soap film
thickness 𝜂 and surfactant concentration Γ: they are passively ad-
vected by the flow field [Yang et al. 2019], but also affected by inflow
or outflow as expressed by the divergence terms in Equations (10b)
and (10c). Unlike the full 3D incompressible flow (Equation (1b)),
the 2D flow within a thin film behaves like a compressible, elastic
medium.

3.3 Surface and body forces
The most important forces governing the motion of a soap film
within its manifold are surface tension, gravity and air friction. The
interaction between gravity and surface tension will cause thinner
films to float upwards and thicker films to drop downwards, so that
a soap bubble (or film) at its equilibrium state always assumes a
wedge shape (Figure 4). Let 𝑔 be the gravitational acceleration scaled
by 𝑈 2/𝑅. If we assume the north pole of the bubble to be pointing up-
wards, then the gravity vector g in the spherical coordinate system
(e𝜃 , e𝜙 ) is g = (𝑔 sin𝜃, 0)⊤.
As a soap bubble is very thin, the film is easily set into motion

by tangential air flow. If the surrounding air is still, it damps the
flow motion. For simplicity, we assume a linear Stokes drag fair =
(Cr/𝜂) (uair − u), with Cr being the drag coefficient. Taking gravity
and air friction into account, Equation (10) becomes



𝐷u
𝐷𝑡

= −𝑀

𝜂
∇Γ + Cr

𝜂
(uair − u) + g,

𝐷Γ

𝐷𝑡
= −Γ∇ · u,

𝐷𝜂

𝐷𝑡
= −𝜂∇ · u.

(17a)

(17b)

(17c)

Interestingly, from Equation (17a), we observe that surface forces
as surface tension and air drag are divided by the film thickness, so
that thinner films are more easily driven into motion, whereas body
forces like gravity act throughout the volume of the body and thus
do not depend on the thickness.
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Fig. 5. The staggered spherical grid. Film thickness𝜂 and soap concentration
Γ are evaluated at the cell center, while the 𝜃 and 𝜙 components of the
velocity vector u are sampled at the midpoints of cell boundaries.

4 METHOD
In this section we develop novel spatial and temporal discretization
schemes for the governing equations. In particular, via using a stag-
gered spherical grid (Section 4.1), we develop an unconditionally
stable advection scheme (Section 4.2) that can smoothly propagate
flow across the poles, as well as a projection-like implicit solver for
handling chemomechanical forces (Section 4.3).

4.1 Spatial discretization
We discretize the spherical domain with a staggered grid [Yang et al.
2019], where velocities and scalar quantities are stored at different
locations (illustrated in Figures 5 and 6). This allows the accurate
evaluation of the concentration gradient ∇Γ and the velocity di-
vergence ∇ · u using central differences without the formation of
checkerboard patterns [Bridson 2015, Ch. 2.4]. Also, a regular grid
discretization makes it possible to build a symmetric positive defi-
nite linear system that can be solved using the conjugate gradient
method.

The velocity vector is split in two components, 𝑢𝜙 and 𝑢𝜃 , which
are located at the center of the cell boundaries, whereas the concen-
tration Γ and the thickness𝜂 are sampled at the cell center. Assuming
the staggered grid consists of 𝑁𝜃 × 𝑁𝜙 cells, then the dimension of
𝑢𝜙 , Γ and 𝜂 is 𝑁𝜃 × 𝑁𝜙 , and the dimension of 𝑢𝜃 is (𝑁𝜃 − 1) × 𝑁𝜙 .

Quantities that do not lie exactly on the respective grid points are
bi-linearly interpolated between neighboring grid points (Figure 7).
Special care needs to be taken when sampling near the poles, as
neighborhood relations reach across the pole. At this point, both e𝜃
and e𝜙 experience a sign change, so velocity samples drawn from
across the pole have to be negated.

4.2 Advection
Taking an operator splitting approach, we first solve the material
derivative (𝐷/𝐷𝑡) parts of u, 𝜂, and Γ in Equation (17) along the

Fig. 6. The staggered spherical grid unrolled in 𝜃 and 𝜙 direction, with the
north pole at 𝜃 = 0 and the south pole at 𝜃 = 𝜋 . Cells with the same color
indicate direct neighborhood. Specifically, in 𝜙-direction, periodic boundary
conditions are employed, while in 𝜃 -direction, 𝜙 is shifted by 180◦ when
crossing the pole. The velocity vector is not stored explicitly at the poles and
instead we sample the vectors close to the pole bi-linearly from neighboring
cells.

intermediate samples
interpolated along ϕ

query point

Fig. 7. Sampling velocities bi-linearly at the pole. As samples are interpolated
across the pole, it is important to take into account the sign flip of u caused
by the parameterization singularity.

velocity field through advection. Afterwards, we treat the remaining
force terms in treated in a separate step (Section 4.3).

On the spherical domain, the pure advection of a time-dependent
scalar field Φ(x, 𝑡), x = (𝜃, 𝜙)⊤, along the velocity field u(x, 𝑡) =

(𝑢𝜃 (x, 𝑡), 𝑢𝜙 (x, 𝑡))⊤ can be written as the initial value problem
[Pironneau et al. 1992]

𝐷Φ

𝐷𝑡
=

𝜕Φ

𝜕𝑡
+ 𝑢𝜃

𝜕Φ

𝜕𝜃
+

𝑢𝜙

sin𝜃
𝜕Φ

𝜕𝜙
= 0,

Φ(x, 0) = Φ0 (x).
(18)

We seek to evaluate the advected quantity at a grid point x𝑖 𝑗 =

(𝜃𝑖 , 𝜙 𝑗 )⊤. In keeping with standard practice in fluid simulation, we
introduce a virtual particle that passes the grid point at time 𝑡 ,
and trace it backward in time. This results in the time-dependent
trajectory 𝑋 (x𝑖 𝑗 ,𝑡 ) (𝜏) for the seed point (x𝑖 𝑗 , 𝑡) and time parameter
𝜏 < 𝑡 . Substituting this trajectory into Equation (18) yields

0 =
𝐷

𝐷𝜏
Φ

(
𝑋 (x𝑖 𝑗 ,𝑡 ) (𝜏), 𝜏

)����
𝜏=𝑡

≈ 1
Δ𝑡

(
Φ(𝑋 (x𝑖 𝑗 ,𝑡 ) (𝑡)) − Φ(𝑋 (x𝑖 𝑗 ,𝑡 ) (𝑡 − Δ𝑡))

)
,

(19)
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(a) Before (b) Single step (c) RK3 (d) [Yang et al. 2019] (e) Ours
(order-1, global) (order-3, global) (order-2, global) (order-2, aligned)

Fig. 8. A scalar field with a sharp transition is advected across the north pole. Shown are film thickness maps before (a) and after (b–e) passing the pole,
advected over 4 time steps using different methods. Using a velocity-aligned coordinate frame introduced in Section 4.2, our method is the only one to solve
this problem without visible artifacts.

v

C(–∆s) C(0)

v

Fig. 9. A single advection step for the velocity field on the sphere, executed in
a local, flow-aligned coordinate frame (great circle𝐶). A detailed description
of the procedure is provided in Section 4.2.

where the finite difference corresponds to a discretization of the
time domain around 𝑡 with step size Δ𝑡 . A particle that undergoes
pure advection experiences Φ as being constant. We exploit this
property to approximate the value for Φ(𝑋 (x𝑖 𝑗 ,𝑡 ) (𝑡)) using a sample
taken a step of Δ𝑡 backward through the flow field. A numerical
integration step like Euler or Runge-Kutta can be used to obtain
Φ(𝑋 (x𝑖 𝑗 ,𝑡 ) (𝑡 − Δ𝑡)).
Advecting vectors on a sphere is much more challenging. As

𝜕e𝜃/𝜕𝜙 and 𝜕e𝜙/𝜕𝜙 are not equal to zero (Appendix A) as they would
be on a Cartesian grid, Equation (12) contains the additional terms
−𝑢2

𝜙/tan𝜃 and 𝑢𝜃𝑢𝜙/tan𝜃 that are not present in Equation (18). Yang et
al. [2019] advect vectors in a scalar-like manner with (𝑢𝜃 ,𝑢𝜙/sin𝜃)⊤,
and treat the two additional terms as body forces in an additional
backward Euler intergration step. Their method does not work well
in practice when additional force terms are present. Instead, we are
able to perform unconditionally stable vector advection in a single
step. We note that at the equator 𝜃 = 𝜋/2, where tan−1 𝜃 = 0, these
two extra terms vanish. There, the advection of a vector field falls
back to the known case of advecting a scalar field. We exploit this
insight in order to obtain this desirable property anywhere on the
sphere. By constructing a local coordinate system at each grid point
that aligns with the velocity, we can treat the quantities there as if
they were on the equator.

For each grid point x𝑖 𝑗 = 𝑋 (x𝑖 𝑗 ,𝑡 ) (𝑡), we draw a great circle on the
sphere that passes through this point and is tangent to the velocity u
at this point (see Figure 9). We denote the unit vector in u-direction

to be û, and the unit vector pointing from the sphere center 𝑂 to
x𝑖 𝑗 to be ŵ, and the binormal unit vector to be v̂ = ŵ × û. Then the
great circle can be parameterized by

𝐶 (𝑠) = sin(𝑠)û + cos(𝑠)ŵ, 𝑠 ∈ R; (20)

i.e., changing the arc parameter 𝑠 translates the current grid point
x𝑖 𝑗 = 𝐶 (0) = ŵ back or forward in timewith unit velocity. Following
u backward for a time stepΔ𝑡 results in a change in the arc parameter
of −Δ𝑠 = −∥u∥Δ𝑡 , taking us to the point

𝐶 (−Δ𝑠) = sin(−Δ𝑠)û + cos(−Δ𝑠)ŵ. (21)

This results in the following single-step advection scheme (Figure 9):
(1) Evaluate the velocity u and establish the great circle 𝐶 in its

direction.
(2) Perform an interpolated lookup of the velocity u′ at 𝐶 (−Δ𝑠)

using the technique described in Section 4.1.
(3) Decompose u′ into tangent and binormal components 𝑢 ′ and

𝑣 ′ with respect to the great circle 𝐶 at this point.
(4) Move components back along the circle to x𝑖 𝑗 = 𝐶 (0) with

𝑣 ′′ = 𝑣 ′, 𝑢 ′′ = 𝑢 ′.
(5) Project the advected quantity u′′ = 𝑣 ′′v̂ +𝑢 ′′û back to global

spherical coordinate system to obtain 𝑢∗
𝜃
and 𝑢∗

𝜙
.

The main distinction of this approach to existing work is in the
choice of coordinate frame. Rather than operating in the global
spherical coordinate system, it locally creates an orthonormal co-
ordinate frame that is defined by the velocity vector and therefore
data-aligned. Since the method only interpolates values from the
last step, it is unconditionally stable.
When higher accuracy is desired, the same principle can also

be used to implement higher-order schemes involving multi-step
updates. As an example, we lay out the construction of a 2nd-order
“half-step” scheme (Figure 21) in Appendix B, which was used to
generate the results shown throughout this paper.

By design, our advection scheme does not produce artifacts when
advecting quantities (scalars or vectors) around the poles, see Fig-
ure 8. [Yang et al. 2019] adapts the advection scheme in [Hill and
Henderson 2016] to staggered grids, where boundary conditions are
introduced at both poles to remove singularities. However, according
to [Hill and Henderson 2016], their method is not free of artifacts:
small disturbances will appear near the pole due to variation of grid
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spacing (the 1/sin𝜃 term becomes prohibitively large near the pole).
By constructing a local frame in our advection scheme, the 1/sin𝜃
term always takes the value 1, so the variation in grid spacing does
not affect the advection. Moreover, the so-called geometry term in
[Hill and Henderson 2016; Yang et al. 2019] that is caused by coor-
dinate orientation changes in curvilinear coordinate systems (see
Appendix A) is in our case implicitly handled when transforming
from global to local coordinates, and does not need to be solved sepa-
rately. By performing our global-to-local coordinate transformation
everywhere on the sphere, we show that all the discretization points
on the sphere can be treated equally and there is no need for any
special pole treatment. We expect this method to perform equally
well as on a Cartesian grid.

4.2.1 Preserving details. The interpolated look-up in our advection
scheme causes numerical diffusion known from all semi-Lagrangian
methods. This is acceptable for u and Γ, since both PDEs include
diffusive terms (see Equation (10)). However, the transport equation
for 𝜂 is non-diffusive. Therefore, it is important to prevent high-
frequency details in the film thickness from blurring out over time.

To achieve this goal, we make use of BiMocq2 [Qu et al. 2019] and
extend the method to spherical coordinates. Essentially, BiMocq2
keeps a backward mapping

X(x(𝑇 )) : x(𝑇 ) → x(𝑡0) (22)

which maps a spatial point x(𝑇 ) back to its position at the initial
time 𝑡0, as well as a forward mapping

Y(x(𝑡0)) : x(𝑡0) → x(𝑇 ) (23)

which maps a spatial point at the initial position x(𝑡0) to its cur-
rent position at 𝑡 = 𝑇 . Instead of repeatedly blurring the features
from the last time step, we acquire the initial state directly from the
backward mapping, which corresponds to the pure advection part
𝐷/𝐷𝑡 . The additional changes (−𝜂∇ · u in our case) are accumulated
along the forward mapping and added to the acquired value from
backward mapping. At each simulation step, both mappings are up-
dated via the advection method in Section 4.2, and the coordinates
are interpolated using spherical linear interpolation. When the dis-
tortion between forward and backward mapping becomes too large,
both mappings are re-initialized. This, however, introduces a small
amount of numerical diffusion. We found that re-initializing both
mappings when the distortion is larger than 𝜋/128 provides a good
trade-off between sharpness and noise. For other implementation
details, such as error correction, we refer the reader to the original
paper.

4.3 Concentration splitting
After solving the advection part 𝐷/𝐷𝑡 = 0, we now deal with force
and divergence terms in the right hand sides of Equation (17). Soap
film exhibits elastic properties similar to a mass-spring system. Solv-
ing such systems using an explicit time integrator would require
prohibitively small step sizes to achieve a stable simulation. Instead,
we construct a projection-like implicit system for Γ and u. To keep
the system linear, we still solve for 𝜂 explicitly.

We temporally discretize the continuous equations into

u − u∗

Δ𝑡
= −𝑀

𝜂∗
∇Γ + Cr

𝜂∗
(uair − u) + g,

Γ − Γ∗

Δ𝑡
= −Γ∗∇ · u,

𝜂 − 𝜂∗

Δ𝑡
= −𝜂∗∇ · u,

(24a)

(24b)

(24c)

where Γ∗, 𝜂∗, and u∗ denote the respective quantities after applying
the advection step. First, we solve for Γ by rewriting Equation (24a)
and applying divergence to both sides of the result,

∇ · u = ∇ · 𝜂
∗u∗ + CrΔ𝑡uair + Δ𝑡𝜂∗g

𝜂∗ + CrΔ𝑡
−𝑀Δ𝑡∇ · ∇Γ

𝜂∗ + CrΔ𝑡
. (25)

Afterwards, we combine Equations (24b) and (25) and eliminate
∇ · u,

Γ

Γ∗Δ𝑡
−𝑀Δ𝑡∇ · ∇Γ

𝜂∗ + CrΔ𝑡

=
1
Δ𝑡

− ∇ · 𝜂
∗u∗ + CrΔ𝑡uair + Δ𝑡𝜂∗g

𝜂∗ + CrΔ𝑡
.

(26)

Finally, we express this linear system as a sparse matrix (Appen-
dix C), solve it for Γ using a preconditioned conjugate gradient
method [Naumov et al. 2015], and update u𝑛+1 and 𝜂𝑛+1 using Equa-
tions (24a) and (24c). Note that this system is strictly symmetric
positive definite unless Γ∗ approaches infinity, in which case we
end up with a Poisson equation that is closely related to pressure
projection in nearly incompressible mixed finite elements.

Our implicit treatment of the concentration based on its evolution
Equation (24b) allows us to take significantly larger time steps com-
pared to what could be permitted when treating the forces explicitly.
Our method also avoids solving an extremely stiff indefinite system
as in standard Newton-based elasticity solvers [Gast et al. 2015].

4.4 Implementation and runtime performance
We implemented our method using CUDA and AmgX [Naumov et al.
2015], and executed it on an NVIDIA GeForce GTX 1080 graphics
card. A typical resolution for our simulation grid is 1024×2048 with
a step size of 0.002 s. At this setting, a single time step typically
takes 16–17 conjugate gradient iterations and 1.1 s to execute. The
bulk of the compute time is spent on divergence/force calculation
and advection with 75% and 25%, respectively.

5 SOAP BUBBLE RENDERING
The iridescent effects produced by thin films are wave-optical effects
that arise from constructive and destructive interference of light
waves. To compute the light power that is reflected or transmitted
when interacting with a thin film, we need to consider the corre-
sponding complex amplitudes of the electromagnetic wave. This
section describes a real-time renderer for spherical soap bubbles
that is specifically targeted at the correct handling of polarization
and spectral sampling.

5.1 Thin film model
We follow themodeling of Belcour and Barla [2017] for the reflection
and transmission through a single thin film layer. In our case, the
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Fig. 10. Light paths in soap film. Light is refracted into the film, and attenu-
ated at each film interaction. The emitted light paths at the top and bottom
of the film produce interference, respectively.

light interacts multiple times with the soap bubble surface on a given
light path, so their analytical solution to the spectral integration
does not directly apply here. After each reflection, we would have
to retract to an RGB representation of the light, introducing an
error that increases with each interaction with the soap bubble.
Therefore, we numerically integrate the compounded reflectance
and transmittance for each light path over the wavelengths 𝜆, which
we sample at 5 nm intervals, and compute the fractional light power
that is carried by each light path for each wavelength.

Material model. The surface of the soap bubble is modeled locally
as a thin film with parallel interfaces, sandwiched between two
layers of air with refractive index 𝑛𝑎 = 1. The refractive index of
the soap water in between is 𝑛𝑠 = 1.33. For a single interaction of
the light with the soap bubble, the film thickness 2𝜂 is assumed
to be constant. For a given light direction i and surface normal n,
we define the angle of incidence 𝜃𝑎 in air via cos𝜃𝑎 = i · n. Upon
refraction into the soap film, the angle at which the light travels is
found via Snell’s law: 𝑛𝑎 sin𝜃𝑎 = 𝑛𝑠 sin𝜃𝑠 . Since the film interfaces
are assumed to be parallel, the angle at which the light is refracted
out of the film at both interfaces equals 𝜃𝑎 , and the direction of
the light transmitted through the film is uninterrupted from air to
air. We assume that the light enters and leaves the film at the same
location on a macroscopic scale, since the film thickness is much
smaller than the lateral extent of the soap bubble.

Thin film reflectance. The polarization-dependent reflectance 𝑅
and transmittance 𝑇 are the ratios of outgoing to incoming light
powers at an interface between two media. In order to compute
these values for two media separated by a thin film, we consider the
complex-valued electro-magnetic wave amplitudes. The complex-
valued reflection coefficient 𝑟 and transmission coefficient 𝑡 describe
the ratios of outgoing to incoming wave amplitudes. Since the power
carried by a light wave is proportional to the square of the wave
amplitude, we have 𝑅 = |𝑟 |2 and 𝑇 = |𝑡 |2. In addition to the power
ratio, they also encode a phase shift of the light wave, which leads
to constructive and destructive interference when two light paths
interfere and their reflection or transmission coefficients are added.

The reflectance and transmittance produced by an interaction with
the film is computed for each wavelength and polarization by tak-
ing all light paths inside the thin film (shown in Figure 10) into
account and accumulating their wave amplitudes. The light waves
are affected by the reflection coefficients 𝑟𝑎𝑠 , 𝑟𝑠𝑎 and transmission
coefficients 𝑡𝑎𝑠 , 𝑡𝑠𝑎 , defined by Fresnel’s equations [Born and Wolf
1970], where 𝑟𝑎𝑠 and 𝑡𝑎𝑠 act at the air-to-soap interface and 𝑟𝑠𝑎 and
𝑡𝑠𝑎 on the soap-to-air interface. The light waves of each path are
also affected by a wavelength-dependent phase shift, induced by the
difference in path length between successively emitted light rays at
each film interface. This difference in path length is known as the
optical path difference D = 4𝜂𝑛𝑠 cos𝜃𝑠 , which introduces a phase
shift Δ𝜙 = 2𝜋 D

𝜆
of a light path with respect to its predecessor. The

phase shifts with respect to the first light ray accumulate linearly,
such that the 𝑘-th ray is phase-shifted by 𝑘Δ𝜙 . Summing the contri-
butions from the infinitely many emitted light rays at the top and
bottom interface yields the reflectance 𝑅,

𝑅(𝜆) =
�����𝑟𝑎𝑠 + ∞∑

𝑘=0
𝑡𝑎𝑠𝑟𝑠𝑎

(
𝑟2
𝑠𝑎𝑒

𝑖Δ𝜙
)𝑘

𝑒𝑖Δ𝜙𝑡𝑠𝑎

�����2
=

�����𝑟𝑎𝑠 + 𝑡𝑎𝑠𝑟𝑠𝑎𝑡𝑠𝑎𝑒
𝑖Δ𝜙

1 − 𝑟2
𝑠𝑎𝑒

𝑖Δ𝜙

�����2 ,
(27)

and transmittance 𝑇 of the thin-film

𝑇 (𝜆) =
����� ∞∑
𝑘=0

𝑡𝑎𝑠

(
𝑟2
𝑠𝑎𝑒

𝑖Δ𝜙
)𝑘

𝑡𝑠𝑎

�����2
=

���� 𝑡𝑎𝑠𝑡𝑠𝑎

1 − 𝑟2
𝑠𝑎𝑒

𝑖Δ𝜙

����2 .
(28)

Since we are not dealing with total internal reflections, |𝑟𝑠𝑎 | < 1
holds and taking the limit of the geometric series yields a closed
form solution for each wavelength.

5.2 Soap bubble ray tracing
The wave nature of light only needs to be taken into account when
computing the reflectance and transmittance for a single interaction
with the soap bubble. Since soap bubbles are inherently transparent,
many light paths contribute to a given view ray. To compute the
light transport along these paths, we multiply the reflectance and
transmittance produced at each soap bubble interaction along the
path. The light transport R (𝑛) for the 𝑛-th order light path is defined
as

R (0) = 𝑅 (0) and R (𝑘) = 𝑇 (0)
𝑘−1∏
𝑖=1

𝑅 (𝑖)𝑇 (𝑘) , (29)

for 𝑘 ≥ 1, where 𝑅 (𝑖) and 𝑇 (𝑖) are the iridescent reflectance and
transmittance produced at the 𝑖-th interaction with the soap bubble
along the path traced backwards from the observer. The reflectance
𝑅 (𝑖) and transmittance𝑇 (𝑖) produced by different interactions along
a path change only due to differences in film thickness. The angle
of incidence is constant for all interactions along a light path (see
Figure 11) and the index of refraction is constant as well.
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Fig. 11. Light paths in a spherical soap bubble. All angles marked in red are
equal.

Polarization. Due to the spherical geometry of the soap bubble,
the incoming and outgoing light directions for all interactions lie in
the same plane. This implies that the light polarization basis (the
decomposition into s and p component) does not change between
successive soap film interactions. Therefore, we are able to correctly
handle polarization effects by first evaluating Equation (29) for
each polarization direction independently, and then averaging both
frames.

Tracing rays. For the computation of the light paths through the
soap bubble, illustrated in Figure 11, we exploit the assumption that
the soap bubble is spherical. We evaluate the first 𝑁 = 8 light paths
through the soap bubble. Since we assume distant illumination, we
do not track the world-space location of the film interactions, and
only consider the relevant directions: the incoming light direction
i(𝑖) of the 𝑖-th order light path to sample the environment map,
the surface normal n(𝑖) to sample the film thickness 2𝜂 at the 𝑖-th
interaction, and the (virtual) viewing direction o(𝑖) , which is used to
compute the directions for the succeeding interaction with the soap
film. Given these values for the 𝑖-th film interaction, the directions
for the 𝑖 + 1-th interaction are defined as

n(𝑖+1) = n(𝑖) − 2n(𝑖) · o(𝑖)o(𝑖) ,

i(𝑖+1) = −o(𝑖) ,

o(𝑖+1) = o(𝑖) − 2o(𝑖) · n(𝑖+1)n(𝑖+1) .

(30)

The surface normal n(𝑖+1) is defined by a reflection of −n(𝑖) at the
outgoing light direction o(𝑖) , and the new outgoing light direction
o(𝑖+1) is then the reflection of the incoming light direction i(𝑖+1) at
the surface normal n(𝑖+1) (see Figure 11).

Spectral integration. To produce an sRGB color image, we have to
integrate the response to the respective color-matching functions
𝑠 𝑗 for 𝑗 ∈ {𝑅,𝐺, 𝐵} of the color space:

𝐿𝑜,𝑗 =

∫
𝑠 𝑗 (𝜆) ·

∞∑
𝑛=0

R𝑛 (𝜆)𝐿 (𝑛)𝑖
(𝜆) d𝜆, (31)

Table 1. Typical values and ranges of dimensional parameters used in our
simulation. For values associated with air and soap solution, such as density
and viscosity, we take common literature values for air and water, respec-
tively, under standard conditions.

Description Symbol Value / Range Unit
Bubble radiusa 𝑅 0.02–0.1 m

Mean half thicknessa 𝜂0 4 × 10−7 –1 × 10−6 m
Characteristic velocity U 1 m s−1

Mean soap concentrationb Γ0 1 × 10−8 –1 × 10−6 mol m−2

Surface tension of
water-air interface 𝛾𝑎 7.275 × 10−2 N m−1

Gas constant 𝑅 8.3144598 J mol−1 K−1

Room Temperature 𝑇 298.15 K
Water mass density 𝜌 997 kg m−3

Water dynamic viscosity 𝜇 8.9 × 10−4 Pa s
Air density 𝜌𝑎 1.184 kg m−3

Air kinematic viscosity 𝜈𝑎 1.562 × 10−5 m2 s−1

Gravitational acceleration 𝐺 9.8 m s−2

Surfactant diffusivityc 𝐷𝑠 (0) m2 s−1

aEmpirical values.
bTaken from [Couder et al. 1989, Figure 1(a)] in the low concentration range.

cWe assume advection to be the dominant transport mechanism.

Table 2. Typical values of dimensionless parameters.

Description Symbol Definition Value

Expansion parameter 𝜖
𝜂0
𝑅

1 × 10−5

Marangoni number 𝑀
Γ0𝑅̄𝑇
𝜌𝜂0𝑈 2 0.83

Reynolds number Re 𝑈𝑅𝜌

𝜇
5.6 × 104

Drag coefficient Cr 𝜌𝑎
√
𝜈𝑎𝑅

𝜌𝜂0
√
𝑈

2.1

Scaled gravitational acceleration 𝑔 𝐺𝑅

𝑈 2 0.49

where 𝐿𝑜,𝑗 is the integrated response for the 𝑗-th color channel, and
𝐿
(𝑛)
𝑖

is the incoming light of the 𝑛-th light path. Since we use an
RGB environment map for illumination, 𝐿 (𝑛)

𝑖
is not know. For each

color channel 𝑗 , we assume 𝐿 (𝑛)
𝑖

= 𝐿
(𝑛)
𝑖, 𝑗

to be constant. Under this
assumption Equation (31) simplifies to

𝐿𝑜,𝑗 ≈
𝑁∑
𝑛=0

𝐿
(𝑛)
𝑖, 𝑗

·
∫

𝑠 𝑗 (𝜆)R𝑛 (𝜆) d𝜆. (32)

6 RESULTS
In the following, we perform a selection of synthetic experiments
and discuss the influence of the most important parameters and
variables. From various sources, we attempted to gather as realistic
a set of parameters as possible. The numbers used for simulations
throughout this section, as well as sources for the more exotic values,
are listed in Tables 1 and 2.
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Γ0 = 3.33 × 10−8 𝑅 = 0.0225 Reference photograph Γ0 = 6.67 × 10−8 𝑅 = 0.045

Fig. 12. Influence of soap concentration Γ0 and bubble radius 𝑅 on the
thickness gradient in equilibrium state. The ratio of both parameters, Γ0/𝑅,
is kept constant for both simulations, causing a similar appearance.

𝑅 = 0.025 𝑅 = 0.05 𝑅 = 0.1

Fig. 13. Equilibrium state as a function of 𝑅, for a film initialized with soap
concentration Γ0 = 6.67 × 10−8 and thickness 𝜂0 = 4 × 10−7 and relaxed
under standard gravity. For larger bubbles, the gravity drag causes a stronger
displacement of material from top to bottom.

(a) Simulation (b) Photograph

Fig. 14. Under the influence of gravity, thicker (heavier) regions form
downward-moving tears; thinner (lighter) regions rise from the bottom.
These effects can be observed both in simulation (a) and experiment (b).

6.1 Mean surfactant concentration and bubble radius
According to the momentum equation (17a), a soap film under grav-
ity but without other sources of excitation has its equilibrium state
at

− 𝑀

𝜂

𝜕Γ

𝜕𝜃
+ 𝑔 sin𝜃 = 0. (33)

The other two Equations (17b) and (17c) can be rewritten as

𝐷 (Γ/𝜂)
𝐷𝑡

= 0, (34)

i.e., Γ/𝜂 remains constant. If the simulation is started with uniform
surfactant concentration and thickness, we can non-dimensionalize
the variables so that Γ(𝑡 =0) = 𝜂 (𝑡 =0) = 1. Combining the above
two equations, this yields

− 𝑀

𝜂

𝜕𝜂

𝜕𝜃
+ 𝑔 sin𝜃 = 0, (35)

the solution of which is

𝜂 =
𝜋∫ 𝜋

0 𝑒−
𝑔 cos𝜃
𝑀 𝑑𝜃

𝑒−
𝑔 cos𝜃
𝑀 . (36)

From this, we can draw at least three conclusions:
• Soap films under the influence of gravity are thinner at the top and
thicker at the bottom, leading to colorful bands on soap bubbles
(Figure 12). As noted in Figure 3, the film color is also influenced
by the viewing angle. On a bubble, the bands are bent downwards;
on a flat film they appear horizontal.

• A constant ratio 𝑔/𝑀 will lead to the same equilibrium state (albeit
through a different dynamic process). From the definitions of𝑀
and 𝑔 (Table 2), this is equivalent to keeping 𝑅/Γ0 constant.

• The larger 𝑅/Γ0, the thinner the film is at the top, and thicker at
the bottom.

This expected behavior is confirmed in experiment and simulation
(Figures 12 and 13).

6.2 Gravity and buoyancy
The momentum equation of a soap bubble

𝐷u
𝐷𝑡

= −𝑀

𝜂
∇Γ + Cr

𝜂
(uair − u) + g (37)

has great resemblancewith the compressible Navier-Stokes equation

𝐷u
𝐷𝑡

= − 1
𝜌
∇𝑝 + 𝜇

𝜌
∇2u + 𝜇

3𝜌
∇(∇ · u) + g, (38)

where the surfactant concentration Γ takes the role of pressure 𝑝 and
the variable thickness 𝜂 substitutes the variable density 𝜌 . In fact,
just as smoke with smaller density flows upwards in the air, thinner
soap film regions also tend to flow upwards. This is confirmed by
our observation. As thinner regions on a soap bubble flow upwards
(and thicker regions downwards), they form drop-shaped “islands”,
and leave “rivers” behind (Figure 14).

6.3 Air friction
Soap films are highly susceptible to air flow, and assume beautiful
patterns in windy environments. When a bubble is blown, a rapidly
rotating wind field is produced inside and induces a shear motion
on the soap film. Advection along the air flow results in thin stripes
that remain stable even after the external influence has stopped (Fig-
ure 15). See Figure 16 for a false-color visualization of the external
air flow and the resulting velocity field in multiple time steps of an
experiment.
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(a) Simulation (b) Photograph

Fig. 15. Inflating a soap bubble with a straw generates a rotating “ball of air” trapped inside the bubble. The resulting velocity gradient leads to a shear motion
and the formation of thin stripes.

(a) 𝑡 = 0.52 s (b) 𝑡 = 1.00 s (c) 𝑡 = 2.04 s (d) 𝑡 = 3.08 s (e) 𝑡 = 3.56 s
Fig. 16. False-color visualization of a time-varying airflow (top) and the resulting velocity field (bottom) on a soap bubble using line integral convolution
[Cabral and Leedom 1993]. From left to right, the correlation of the lines shows the direction of the respective vector field, while the magnitude is encoded in
the color. (a) After initialization with a noise texture, the fluid sags down under the influence of gravity. (b)–(d) Over a corridor on the surface, air gradually
starts flowing and slows down again. The soap fluid follows the excitation. (e) After the air has stopped flowing, the bubble remains in a rotating motion.

6.4 Evaporation
Due to evaporation, a soap bubble exposed to air becomes thinner
and thinner and eventually breaks down. Since evaporation mostly
depends on the exposed surface (which is constant), we model this
effect by subtracting a small constant amount of 𝜂 at each simula-
tion step. Once a point on the surface reaches thickness zero, the
simulation is terminated. Our model in its current form does not
support the simulation of bursting bubbles. Figure 17 shows a soap
bubble over its whole lifetime. Starting from a random thickness
distribution, thicker regions are moving downwards and horizontal
color bands. Shortly before bursting, the top of the bubble becomes
very thin and exhibits a gray appearance.

6.5 Real-world experiments
To capture stills and videos of real-world bubbles under laboratory
conditions, we constructed simple studio environments consisting
of 1200 mm×600 mm LED panels, black theater curtain and a Sony
ILCE-7RM3 system camera with a ZEISS Batis 135 mm 𝑓 /2.8 lens.
We use Pustefix brand soap solution for all experiments.

7 DISCUSSION AND FUTURE WORK
We have been able to show that our model and solver, which is fast
and stable, can recreate the most prominent effects found on spheri-
cal soap bubbles in the real world. An obvious next step will be to
look into more general cases, like complex film shapes or groups of
bubbles. Although we focus on spherical geometry in this paper, the
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(a) t=1 s (b) t=3 s (c) t=5 s (d) t=7 s (e) t=9 s (f) t=11 s

Fig. 17. Life of a soap bubble. The bubble was initialized with a Perlin noise texture and excited by curl-noise air flow. As water evaporates and the film
becomes thinner, the colorful bands move gradually downwards and the top of the bubble fades to gray.

Fig. 18. A vertical soap film with marginal regeneration. Picture taken from
[Nierstrasz and Frens 1999].

ideas underlying our scheme are not limited to spherical domains.
The model in [Ida and Miksis 1998a] is valid for general manifolds;
following their derivation, one arrives exactly at Equation (10), with
the definition of the differential operators adjusted to the corre-
sponding curvilinear coordinate frame. Furthermore, the idea of our
advection scheme is independent of the underlying manifold shape,
as long as a proper local coordinate frame is constructed. Finally,
the special force and divergence terms treatment in Equation (26)
holds for arbitrary shapes and can be expressed as a sparse matrix,
as long as the neighborhood of each point is well-defined. How-
ever, nice-to-have properties (such as the matrix being symmetric
positive definite) might be lost in other types of meshes or grids.
Consequently, our scheme should not be difficult to generalize to
bubbles that are diffeomorphic to a sphere. Groups of bubbles with
Plateau borders, as well as bounded films, are not manifolds and
hence have to be left to future consideration. The treatment of film
boundaries deserves particular attention also because a complicated
mechanism called marginal regeneration [Isenberg 1978] causes the
film to become even thinner at the boundaries, producing regions
that flow upwards erratically (see Figure 18).

7.1 Viscous film
Soap films with larger viscosity tend to be more stable and last
longer, which can be achieved by adding glycerin to home-made
soap solution. Some commercial soap solution also includes addi-
tional formula to make it more viscous. The soap solution we used in

(a) Viscous soap film (b) Inviscid soap film

Fig. 19. Two simulations with/without viscosity term Re−1V, otherwise
under the same condition and after same frame numbers. A viscous film
tends to keep its texture longer in shape and has a reduced tendency to
break into fractal structures.

experiments, for example, has a dynamic viscosity of 1.2 × 10−1 Pa s,
which is about 100 times greater than that of water and thus shows
different dynamics. The example in Figure 19was obtained by adding
a very basic explicit step to compute viscosity; however, this is slow
and unstable and thus not included in our standard solver.

7.2 Black film
As a film keeps thinning through evaporation or gravity drag, at
some point it becomes so thin that destructive interference takes
place, and the film appears completely black. The thickness is then
about 5 nm–30 nm [Isenberg 1978; Rücker 1877]. At such a small
scale, molecular forces come into play, such as Van der Waals attrac-
tion, electrostatic repulsion, and Born repulsion. These molecular
forces cause black film to be surprisingly stable and form sharply
defined “islands” within the colorful film (Figure 20). In future work,
it will be interesting to include such molecular forces in an extended
model.
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A MATERIAL DERIVATIVE IN SPHERICAL
COORDINATES

The material derivative describes the rate of change of a quantity
moving with a time-dependent velocity field u. We denote a di-
mensionless scalar quantity in spherical coordinates as Φ(𝜃, 𝜙, 𝑡).
Applying the chain rule yields

𝐷Φ

𝐷𝑡
=

𝜕Φ

𝜕𝑡
+ 𝜕Φ

𝜕𝜃

𝑑𝜃

𝑑𝑡
+ 𝜕Φ

𝜕𝜙

𝑑𝜙

𝑑𝑡
. (39)

The dimensionless velocities in spherical coordinates are defined as

𝑢𝜃 =
𝑑𝜃

𝑑𝑡
, 𝑢𝜙 = sin𝜃

𝑑𝜙

𝑑𝑡
. (40)

Note that we included the sphere radius𝑅 in our non-dimensionaliza-
tion of 𝑡 in Section 3.2, thus we do not need to take account of the
sphere radiuswhen taking the derivatives. Substituting Equation (40)
in Equation (39) gives

𝐷Φ

𝐷𝑡
=

𝜕Φ

𝜕𝑡
+ 𝑢𝜃

𝜕Φ

𝜕𝜃
+

𝑢𝜙

sin𝜃
𝜕Φ

𝜕𝜙
. (41)

The material derivative of a vector quantity, for example velocity, is
similarly written as

𝐷u
𝐷𝑡

=
𝜕u
𝜕𝑡

+ 𝜕u
𝜕𝜃

𝑑𝜃

𝑑𝑡
+ 𝜕u
𝜕𝜙

𝑑𝜙

𝑑𝑡
, (42)

where
𝜕u
𝜕𝑡

=
𝜕𝑢𝜃

𝜕𝑡
e𝜃 +

𝜕𝑢𝜙

𝜕𝑡
e𝜙 + 𝑢𝜃

�
�𝜕e𝜃
𝜕𝑡

+ 𝑢𝜙
�
��

𝜕e𝜙
𝜕𝑡

. (43)

To evaluate the remaining two partial derivatives, we take a step
back to look at the derivatives of unit vectors in sphere coordinates.
Neglecting the radial (𝑟 -dependent) component, they are
𝜕e𝜃
𝜕𝜃

= 0,
𝜕e𝜃
𝜕𝜙

= cos𝜃e𝜙 ,
𝜕e𝜙
𝜕𝜃

= 0,
𝜕e𝜙
𝜕𝜙

= − cos𝜃e𝜃 . (44)

Thus,
𝜕u
𝜕𝜃

=
𝜕𝑢𝜃

𝜕𝜃
e𝜃 +

𝜕𝑢𝜙

𝜕𝜃
e𝜙 + 𝑢𝜃

𝜕e𝜃
𝜕𝜃

+ 𝑢𝜙
𝜕e𝜙
𝜕𝜃

=
𝜕𝑢𝜃

𝜕𝜃
e𝜃 +

𝜕𝑢𝜙

𝜕𝜃
e𝜙 ,

(45)
and

𝜕u
𝜕𝜙

=
𝜕𝑢𝜃

𝜕𝜙
e𝜃 +

𝜕𝑢𝜙

𝜕𝜙
e𝜙 + 𝑢𝜃

𝜕e𝜃
𝜕𝜙

+ 𝑢𝜙
𝜕e𝜙
𝜕𝜙

=
𝜕𝑢𝜃

𝜕𝜙
e𝜃 +

𝜕𝑢𝜙

𝜕𝜙
e𝜙 + 𝑢𝜃 cos𝜃e𝜙 − 𝑢𝜙 cos𝜃e𝜃 .

(46)

Combining Equations (40), (43), (45) and (46) we obtain

𝐷u
𝐷𝑡

=

(
𝜕𝑢𝜃

𝜕𝑡
+ 𝑢𝜃

𝜕𝑢𝜃

𝜕𝜃
+

𝑢𝜙

sin𝜃
𝜕𝑢𝜃

𝜕𝜙
−

𝑢2
𝜙

tan𝜃

)
e𝜃

+
(
𝜕𝑢𝜙

𝜕𝑡
+ 𝑢𝜃

𝜕𝑢𝜙

𝜕𝜃
+

𝑢𝜙

sin𝜃
𝜕𝑢𝜙

𝜕𝜙
+
𝑢𝜃𝑢𝜙

tan𝜃

)
e𝜙 .

(47)

B 2ND-ORDER HALF-STEP UPDATE
Based on the single-step scheme detailed in Section 4.2, we construct
a multi-step scheme inspired by second-order Runge Kutta that can
deliver higher accuracy (Figure 21). First, the velocity vector sampled
at the grid point (red) defines a great circle (also red) which is
used to construct a local coordinate frame. Following this direction
backward by a half time step, a second velocity vector (blue) is

C1

C2
great circle C1

great circle C2

velocity u2 retrieved 
at C1(–2–1||u1||∆t) 

velocity u1 at grid point

final lookup point
for velocity u3 :
full step to C2(–||u2||∆t)

back-traced point
C1(–2–1||u1||∆t)

Fig. 21. Construction of a multi-step scheme similar to an order-2 Runge-
Kutta update.

sampled. After transforming this vector back to the original point,
it generates a second great circle (also blue). A full backward step
along this circle takes us to the look-up location (∗) for the value
that is advected to the grid point.

C LINEAR SYSTEM
We solve Equation (26) on a grid of dimension𝑚 × 𝑛 and cell size
Δ𝑠 × Δ𝑠 in matrix form 𝐴𝚪 = b, where

𝚪 =
[
Γ0,0, . . . , Γ𝑚−1,𝑛−1

]⊤ ∈ R𝑚𝑛, 𝒃 =
[
𝑏0,0, . . . , 𝑏𝑚−1,𝑛−1

]⊤ ∈ R𝑚𝑛

and 𝐴 ∈ R𝑚𝑛×𝑚𝑛 is a sparse, block diagonal matrix with five el-
ements in each row, corresponding to the cell itself and its four
direct neighbors. In order to make 𝐴 symmetric positive definite,
we multiply both sides of Equation (26) by sin𝜃 . Then, in each row,
the entries of 𝐴 are given by

𝐴𝑖,mid = sin𝜃 (Δ𝑡Γ∗
𝜃,𝜙

)−1 +𝑀Δ𝑡Δ𝑠−2
sin−1 𝜃

𝜂∗
𝜃,𝜙− Δ𝑠

2
+ CrΔ𝑡

+ sin−1 𝜃

𝜂∗
𝜃,𝜙− Δ𝑠

2
+ CrΔ𝑡

+

sin
(
𝜃 + Δ𝑠

2

)
𝜂∗
𝜃+ Δ𝑠

2 ,𝜙
+ CrΔ𝑡

+
sin

(
𝜃 − Δ𝑠

2

)
𝜂∗
𝜃− Δ𝑠

2 ,𝜙
+ CrΔ𝑡

 ,
𝐴𝑖,left|right = − sin−1 𝜃𝑀Δ𝑡Δ𝑠−2 (𝜂∗

𝜃,𝜙∓ Δ𝑠
2
+ CrΔ𝑡)−1,

𝐴𝑖,up = − sin
(
𝜃 − Δ𝑠

2

)
𝑀Δ𝑡Δ𝑠−2 (𝜂∗

𝜃− Δ𝑠
2 ,𝜙

+ CrΔ𝑡)−1,

𝐴𝑖,down = − sin−1 𝜃𝑀Δ𝑡Δ𝑠−2 (𝜂∗
𝜃,𝜙+ Δ𝑠

2
+ CrΔ𝑡)−1,

where 𝜃 and 𝜙 denote the cell center of the respective mid cell. The
right hand side 𝑏 is given by

𝑏𝑖, 𝑗 = sin𝜃

(
1
Δ𝑡

− ∇ ·
𝜂∗
𝑖, 𝑗
u∗
𝑖, 𝑗

+ CrΔ𝑡 (uair)𝑖, 𝑗 + Δ𝑡𝜂∗
𝑖, 𝑗
g𝑖, 𝑗

𝜂∗
𝑖, 𝑗

+ CrΔ𝑡

)
.
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