
Real-time Point Cloud Compression

Tim Golla1 and Reinhard Klein2

Fig. 1. Left: The original Frankenforst dataset with colors, consisting of
43.6 million points (624MB). Center: Reconstruction from a compressed
version with a file size of 4.20MB, an RMSESNN of 0.0065m and an
RMSERGB of 17.09. Right: Reconstruction from a compressed version with
a file size of 8.00MB, an RMSESNN of 0.0028m and an RMSERGB of
11.69. Note that some fine-scale detail is smoothed out, but the overall
visual impression is still good, despite the high compression ratio.

Abstract— With today’s advanced 3D scanner technology,
huge amounts of point cloud data can be generated in short
amounts of time. Data compression is thus necessary for storage
and especially for transmission, e.g., via wireless networks.
While previous approaches delivered good compression ratios
and interesting theoretical insights, they are either computation-
ally expensive or do not support incrementally acquired data
and locally decompressing the data, two requirements we found
necessary in many applications. We present a compression
approach that is efficient in storage requirements as well as in
computational cost, as it can compress and decompress point
cloud data in real-time. Furthermore, it is capable of com-
pressing incrementally acquired data, local decompression and
of decompressing a subsampled representation of the original
data. Our method is based on local 2D parameterizations of
surface point cloud data, for which we describe an efficient
approach. We suggest the usage of standard image compression
techniques for the compression of local details. While exhibiting
state-of-the-art compression ratios, our approach remains easy
to implement. In our evaluation, we compare our approach to
previous ones and discuss the choice of parameters. Due to our
algorithm’s efficiency, we consider it as a reference concerning
speed and compression rates.

This work was partially funded by the German Research Foundation
(DFG) under grants KL 1142/9-1 and KL 1142/9-2 (Mapping on De-
mand) and by the European Community’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement no. 600908 (DURAARK) 2013-
2016 and under grant agreement no. 323567 (Harvest4D) 2013-2016. The
David point cloud is courtesy of the Digital Michelangelo Project, Stanford
University. The Thermobremen dataset is recorded by Dorit Borrmann and
Andreas Nüchter from Jacobs University Bremen gGmbH, Germany. The
Frankenforst datasets are courtesy of the group of Prof. Kuhlmann, Institute
of Geodesy and Geoinformation, University of Bonn.

1 golla@cs.uni-bonn.de
2 rk@cs.uni-bonn.de
Both authors are with the Institute of Computer Science II, University of

Bonn

I. INTRODUCTION

Modern 3D laser scanners like the Velodyne HDL-64E
can acquire 3D point cloud data at high rates of up to
1.5 million points per second. For many applications, e.g.,
robotics, it is desirable to transmit this data in real-time via
restricted bandwidth networks. For this, reducing the data as
far as possible at real-time rates is necessary. We consider
an algorithm that is able to compress points at least at the
scanner rate, i.e., at 1.5 million points per second, as real-
time capable. One way to achieve real-time rates is OctoMap
[7], which was developed especially for robotics applications.
While not primarily intended as a compression approach
but a data structure for mapping environments, it can be
considered and used as such. It achieves real-time processing
rates and can reduce, for instance, a dataset consisting of
315.5 million points to 45MB at a root mean square error
(RMSE) of 0.006m [26]. Approximately 10 years ago,
compression algorithms were developed in the computer
graphics community that are able to achieve an additional
compression factor of approximately 10. One example is the
algorithm of Ochotta and Saupe [19], who parameterized the
point cloud over planar patches and compressed the resulting
height maps via a wavelet transform.

Unfortunately, this algorithm does not support incremental
compression and local decompression, in the sense that the
user can add new data to the representation and randomly
extract data at specific locality. Later, the idea to use an
atlas of height maps was introduced into the robotics area
by Ruhnke et al. [25], [26], whose approach achieves similar
compression rates, but also guarantees locality during the
decompression. The drawback of all these approaches is that
they require high computational effort and are currently far
from real-time with respect to compression time.

In this paper, we propose a real-time out-of-core com-
pression approach that is able to compress 3D points with
compression ratios that are at least comparable to, but mostly
better than the compression ratios of previous compression
approaches. Furthermore, our algorithm supports incremen-
tally acquired data, as is necessary, e.g., in online robotics
applications. Decompression also works at real-time rates
and is local, i.e., only the necessary parts of the data
can be extracted. It inherently supports subsampling, i.e., a
subsampled version of the point cloud can be reconstructed
from the compressed representation. Where possible, we use
standard techniques in order to make our algorithm easy to
implement. Last but not least our approach is able to trade
compression ratios for speed. To the best of our knowledge,
our algorithm is the first to exhibit all these properties.

©IEEE

II. RELATED WORK

There are a number of approaches that employ height
map encoding over a planar domain as a basis. The first
to describe a height map-based point cloud representation
were Pauly and Gross [22], who proposed to use an atlas
of height maps. They use it to perform spectral analysis of
point clouds. Based on this idea, Ochotta and Saupe [19]
introduced height map-based point cloud compression. They
recursively subdivide a point cloud by splitting along a plane
orthogonal to the first principal component vector, obtained
by principal component analysis (PCA). The subdivision
ends as soon as all points belonging to a half-space fulfill
the normal condition, i.e., all normals belonging to the points
of a half-space are contained in a cone with its apex at the
origin and an apex angle that does not exceed a user-specified
threshold. The height maps are compressed via a wavelet
transform. In addition, binary masks (subsequently called
occupancy maps) defining the patch shape are generated
and compressed via arithmetic coding. The authors refined
this approach in 2008 [20] and used a generalized Lloyd
algorithm [18] to generate the atlas of height maps which
provides partitions with a smaller number of patches and a
smaller approximation error. While resulting in very good
compression rates, compression times are not sufficient for
a real-time application. Furthermore, the decomposition in
both algorithms is performed on the whole point set and does
not support out-of-core processing. Hubo et al. [12], [13]
used the idea of height maps for compression by selecting a
number of representative height maps and replacing all other
height maps with these representatives. Their compression
times are in the order of hours.

The approaches of Ruhnke et al. [25], [26] are based
on a sparse coding of height maps, which are extracted
from a patch decomposition of static point clouds. In [25],
they extract rectangular patches from the surfaces, which
are projected onto a regular grid whose orientation is deter-
mined by the local surface’s principal axes. The compression
scheme in [26] is extended by a recursive decomposition
of larger patches that uses an adaptive subdivision criterion
based on the reconstruction error, i.e., instead of patches of
fixed size and resolution, the authors encode a hierarchy of
surface patches. Digne et al. [4] follow a similar approach
and decompose a point cloud by a greedy approach into
circular planar patches. While they use the K-SVD dictionary
learning algorithm described in [24], Ruhnke et al. [25], [26]
rely on a modification named wK-SVD, that allows to specify
weights for each element of the encoded signals. Their usage
of wK-SVD stems from the need to account for empty or
undefined pixels in the height maps. The dictionary approach
allows for local decompression. Digne et al. report the best
compression ratios on the David point cloud so far. For this
point cloud they report a compression time of 8 minutes
and a decompression time of 10 minutes. In contrast to most
other approaches, they do not use occupancy masks and thus
fill small holes in the point cloud, as they demonstrate on a
point cloud recorded in the city center of Bremen.

In contrast to these approaches that compress height
maps over planar domains, Schnabel et al. [28], [29] use
height maps over different, also non-planar domains, namely
geometric primitives like planes, spheres, cylinders, cones
and tori. Instead of K-SVD, they use vector quantization
for the height map compression. They achieve real-time
decompression rates, but the compression times are too
long for real-time purposes. This approach has later been
accelerated and extended in order to support incrementally
acquired data [5]. As the reported compression rates are
not better than the ones reported by Digne et al. [4] and
the decomposition is more difficult to compute, we do not
consider non-planar domains in our new algorithm.

There is a number of tree-based approaches. For example
Huang et al. [10] and Schnabel and Klein [27] hierarchically
encode the tree structure and thus cannot extract randomly
selected parts of the data. Their compression ratios are not
on par with the height map-based approaches. The approach
presented by Hubo et al. [11] allows random access, but also
exhibits compression ratios not on par with later works.

Further compression methods are [9], [14], [15], [17], [32],
which are all not real-time capable. Kammerl et al. [16]
presented an algorithm for real-time point cloud compres-
sion. Their approach is well-suited for streams of point cloud
data with a fixed-position camera, by exploiting redundancy
between consecutive frames. It is inapt for point cloud data
of different origin.

III. OUR METHOD

A. Overview

In order to support out-of-core processing, incrementally
acquired data and partial decoding, we first split the data
into compression chunks. For this purpose, we decompose
the world space into voxels of a user-specified size that
are compressed individually. In combination with out-of-core
sorting, this also allows for compressing static point clouds
of arbitrary size. In the online scenario, incoming data is
buffered for a voxel until new incoming data no longer falls
into that voxel. The correct moment for compression can
also be controlled by the robot navigation, i.e., it is started
when an area has been completely explored. Since the voxel
grid is only implicitly computed, it can grow as needed and
thus scenes of arbitrary size can be compressed. Data size
slightly increases as the voxel size decreases. This parameter
thus has to be chosen considering a trade-off between locality
and compression ratio.

If the application requires an immediate data transmission,
it is also possible to skip the previously described buffering
step and compress each scan individually with the method
described in the following sections.

Like previous approaches, the compression of the point
clouds belonging to a voxel is based on a decomposition
into point clusters that can be represented by patches, param-
eterized over planar 2D domains. In order to represent fine-
scale details, height and occupancy maps on these domains
are generated. The height maps account for offsets of the
original geometry from the domains, while the occupancy

©IEEE

maps account for holes in the geometry, like windows in a
building facade.

B. Point Cloud Decomposition and Patch Computation

Having a coarse decomposition of the point cloud into
compression chunks, we now have to generate for each chunk
a set of patches. Different patch generation techniques were
suggested in the literature, e.g., in [4], [25] and [29]. We
found that already a simple decomposition by a voxel grid,
where each voxel corresponds to one patch, delivers good
results. The choice of the cell size has a direct effect on the
compression ratio and the reconstruction quality and is thus
the primary control over size vs. quality. All points belonging
to one voxel cell are considered as a cluster. All clusters are
overlap-free. Although this decomposition method is much
simpler than previous ones, we found its results sufficiently
good. It is, however, possible to achieve better compression
ratios and quality by using a data-adaptive approach. For this,
the chunk is recursively subdivided into an octree structure
until sufficiently small clusters have been generated. We
specify a number of points nl and subdivide until all of the
tree’s leaf node voxels contain at most nl points, each of
which is then represented by a patch. If normals are present,
a normal cone criterion like in [19] can be used to subdivide
further. Although slightly more involved than the voxel grid
decomposition, this method is still fast enough for real-time
applications.

Each patch is characterized by its position, orientation
and size. We obtain the patch’s normal n by a principle
component analysis (PCA) of the associated point cluster.
The patch’s rotation around the normal could also be de-
termined by PCA. Due to the decomposition by cubical
shapes, the projection of the point clusters often have a
rectangular shape. The principal components tend to point
to this rectangle’s corner. It is desirable to orient the patch
such that the rectangle’s edges are parallel to the coordinate
system’s axes. This leads to a better usage of the height and
occupancy maps and to a better compression with oriented
wavelet bases and the oriented discrete cosine transform, as
these also are oriented along the coordinate system. We thus
orient the local domain’s coordinate system along the global
coordinate system. It is computed as follows. Let ep1, e

p
2, e

p
3

be the x-, y- and z-axis of the local coordinate system and
× be the vector cross product. Then: ep1 = n×(1, 0, 0), ep2 =
n×ep1, e

p
3 = n. As the coordinate system’s origin we choose

the point cluster’s center of mass.

C. Height Map and Occupancy Map Computation

The height and occupancy maps are 2D bitmap images
of a predefined resolution rx × ry . In all our experiments,
we chose rx = ry and in most cases rx = ry = 16. As
the subsequently employed image compression techniques
operate on image patches of size 8i × 8j, i, j ∈ {1, 2, ...},
choosing the patch size accordingly leads to better results.
Additional maps can be used for colors, normals and other
information associated with the original points. Having the
same fixed resolution, the maps vary in physical dimension

in order to account for their associated point cluster’s extent.
This has two advantages. Firstly, it avoids empty regions on
the maps, which would lead to wasted space and unnecessary
high frequencies, which would be harder to compress. Sec-
ondly, it makes – especially in combination with the octree-
based decomposition – our approach data-adaptive: sparsely
sampled regions are represented by larger patches, while
densely sampled regions are represented by small patches.
This leads to a more space-efficient usage of the height maps.
We compute the cluster’s bounding box in its associated
coordinate system, which gives us the necessary extent.

We transform each of the cluster’s points into the lo-
cal coordinate system (ep1, e

p
2, e

p
3), yielding its coordinates

(xp, yp, zp). (xp, yp) determine the position in the height
map and zp the height h, which is stored at (xp, yp) in
the height map. Also the respective position (xp, yp) in the
occupancy map is set to 1. If several points are projected
onto the same pixel, the height map’s value at that position
is set to the average of their heights. Note that the height
values are floating point values and can be negative and
– in principle – of arbitrary magnitude. We quantize them
afterwards – see section III-D. Color and other maps are
computed analogously to the height maps. We improve the
compression ratio by smoothing out the unoccupied areas of
the height and color maps, removing high frequencies. In
our experiments we found recursively applying a box filter
of size 5 three times to yield good results. This has no
direct effect on the reconstruction results, as these areas are
not used for reconstruction. It has an indirect effect however,
as lower frequency information can be better represented by
the employed discrete cosine, resp. wavelet compression.

D. Quantization and Compression

All non-integer values are quantized. We represent the
patch orientation with three values, which are quantized to
8 bits each. The patch position is quantized to three 16 bit
values and the size is quantized to 8 bits. Height map values
are quantized to 8 bits as well, in order to be conformal with
standard image compression algorithms. For all quantities,
the minimum value m and the maximum value M within a
compression chunk are determined and stored in a separate
file. All values v are then set to v′ = v−m

M−m and quantized
to the corresponding number of bits. We tile all maps of one
type belonging to one chunk into one large map. Depending
on the map type, these maps are compressed differently.
Height and color maps are compressed with the JPEG or the
lossy JPEG 2000 standard [2], [30]. JPEG is faster, while
JPEG 2000 delivers smaller file sizes at comparable error
rates. JPEG 2000’s most important steps can be summarized
as applying the Cohen-Daubechies-Feauveau 9/7 wavelet
transform [3] and encoding the wavelet coefficients with
a context-adaptive arithmetic coder. Occupancy maps are
compressed via the lossless JBIG2 algorithm [8], [21]. We
compress the patch positions, orientations and sizes with
the Lempel-Ziv-Markov chain algorithm (LZMA) [23], an
extended variant of the LZ77 algorithm [33].

©IEEE

E. Decompression and Subsampling

For decompression, the JPEG/JPEG 2000, JBIG2 and
LZMA-compressed files are decoded, the big maps are
split into separate ones, which are associated with their
respective patches. Where a pixel on an occupancy map is
marked as occupied, we look up the respective height and
color values in the height resp. color maps and restore the
point correspondingly by transforming the height value to
a global position from the patch’s local coordinate system.
For subsampling with a factor of i, only each ith point is
reconstructed.

IV. EVALUATION

A. Error Measures

In order to compare our results to those presented in the
related work, we describe the error measures for 3D point
clouds used in the literature. We use each respective measure
in order to be able to compare our results to those of the
previous work. For all measures, we consider two point
clouds P and Q, whose distance is to be measured. We
consider P to be the original point cloud and Q to be its
reconstruction from a compressed representation.

The Nearest Neighbor root mean squared error (RMSE)
is computed by measuring the euclidean distance of each
point p in P to its nearest neighbor q in Q. Employed
e.g. in [29]. The mean squared error (MSE) is defined as:
MSENN(P,Q) =

∑
p∈P (p−q)2/|P |. The root mean squared

error (RMSE) then is: RMSENN(P,Q) =
√

MSENN(P,Q),
where |P | is the number of points in P . This is a single-
sided error measurement. Thus, RMSENN(Q,P) should be
computed as well, in order to account for inliers and outliers.

The MSE and RMSE can also be defined for the color
values of a point cloud [25], [26]. Let p.r, p.g, p.b ∈
{0, ..., 255} be the RGB values of point p. For the
red channel: MSER,NN(P,Q) =

∑
p∈P (p.r − q.r)2/|P |,

Here, q ∈ Q is again the spatially nearest neigh-
bor to p. MSEG,NN(P,Q) and MSER,NN(P,Q) are de-
fined analogously. MSERGB,NN(P,Q) = 1

3MSER,NN(P,Q) +
1
3MSEG,NN(P,Q) + 1

3MSEB,NN(P,Q)

The Symmetric Nearest Neighbor RMSE is used
in [25], [26]. It is the symmetric version of the
Nearest Neighbor RMSE. RMSESNN(P,Q) =√
0.5MSENN(P,Q) + 0.5MSENN(Q,P). Analogously

for the color values: RMSERGB,SNN(P,Q) =√
0.5MSERGB,NN(P,Q) + 0.5MSERGB,NN(Q,P). Unless

otherwise stated, we use this measure in our evaluation.
The moving least squares RMSE is used in [4], [19] and

[20] and defined as the sum of the shortest euclidean distance
of P ’s points to the moving least squares (MLS) surface [1]
of Q. While intuitively probably a better measure than the
ones above, it has the disadvantage that the moving least
squares surface is parameter-dependent. Hence, the distance
measure of two point clouds varies, depending on the choice
of parameters for the MLS surface. We thus do not use it in
our evaluation.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Bitrate (bpp)

50

55

60

65

70

75

80

85

90

P
S

N
R

 (
dB

)

Ours
Kalaiah et al. 2005
Hubo et al. 2008
Schnabel et al. 2008
Digne et al. 2014

Fig. 2. Compression results on the David point cloud using the voxel grid
decomposition. Bits per point (bpp) vs. PSNR. Our algorithm outperforms
previous approaches. For comparability, PSNR is based on the RMSENN.

The peak signal-to-noise ratio (PSNR) is given as:
PSNR = 20 log10

peak
max(RMSE(P,Q),RMSE(Q,P)) , where in the

field of geometry, the peak is usually chosen as the bounding
box diagonal [6]. In the related work, the PSNR is only used
in combination with the Nearest Neighbor RMSE, although
all of the RMSE definitions above could be used.

B. Compression Results

We performed the evaluation with a selection of point
clouds of different origins and properties on a standard
desktop PC with an Intel Core i7-4930K CPU. The David
statue dataset with 28.2 million points has become one of the
most used datasets in the computer graphics community. We
thus employ it to compare our results to those reported in the
previous papers [4], [13], [15], [29] – see Fig. 2. Considering
a fixed bit rate, our approach achieved a higher PSNR, i.e.,
reconstruction quality, than previous methods. Compression
times varied between 6.2 and 14.6 seconds, depending on
the quality setting, i.e., from 1.93 to 4.55 million points per
second were processed. Decompression times varied between
0.7 and 10.3 seconds.

The fr1/room dataset [31] consists of a sequence of RGB-
D images. Like Ruhnke et al. [26], we generated a point
cloud from it as the SLAM solution with the provided ground
truth trajectory. The resulting point cloud consists of 315.5
million points. Our evaluation on this dataset showed that
our approach is substantially faster than the ones described
in [25], [26], while providing even better compression ratios
– see Table I. The compression at a quality comparable
to the one presented in [26] took 43 seconds, while their
approach took 36 minutes. That is, we achieve a compression
performance of 22.7 million points per second. To evaluate
the effects of the compression chunk size on the compression
result, we ran the compression multiple times with different
voxel sizes. The results for the fr1/room dataset are plotted
in Fig. 5. As can be seen in this plot, the resulting data
size increases slowly as the chunk size decreases. The voxel
size can be reduced down to about 10−3.5% of the whole
dataset’s volume with a negligible impact on the compression
ratio in comparison to a voxel size of 100%, i.e. only

©IEEE

0.0 0.2 0.4 0.6 0.8 1.0
File size (MB)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
R

M
S

E
 (
m

)

5.2

5.4

5.6

5.8

6.0

tim
e(

s)

Fig. 3. Compression results of the Frankenforst dataset without colors,
consisting of 43.6 million points (499MB), Octree decomposition, JPEG
compression. MB vs. RMSE (blue), MB vs. time (red, dotted line)

Fig. 4. The highly nonplanar Frankenforst 2 dataset (262.2 · 106 points,
3001MB). Left: Original. Right: Reconstruction after compression to
9.0MB with an RMSESNN of 0.028m.

one voxel, which provides the best compression ratio. The
Thermobremen dataset consist of several scans acquired
in the city center of Bremen, Germany. The point cloud
obtained by combining these scans consists of 40.7 million
points. The compression results with our approach are plotted
in Fig. 6. The compression for the complete dataset took
between 3 and 6.5 seconds, i.e., 6.3 to 13.6 million points
were processed per second. The Frankenforst dataset was
generated from multiple scans performed with a terrestrial
laser scanner. It consists of 43.6 million points – see Fig. 1.
The Frankenforst 2 dataset contains the same building and
also a larger surrounding area with vegetation. See Fig. 4
for a visualization and Table II for the compression results.
Although this dataset contains highly nonplanar regions, it
could be reconstructed at a low error. In order to evaluate
the compression without buffering, we compressed the first
scans of the fr1/room resp. the Thermobremen dataset. The
compression was performed with at least 2.88 million points
per second – see Table II.

V. CONCLUSION

We presented a compression approach that outperforms
previous methods in terms of speed as well as in terms
of compression ratio at comparable quality. Our approach
is fast enough for real-time applications in terms of the
number of points that can be processed per second. It is
possible to immediately compress each single scan in real-
time, however, for the best compression ratios, a buffering
step is required, which might cause intermediate delays. Our
approach supports incrementally acquired data as incident in

6 5 4 3 2 1 0
Chunk size (log10(percent of total volume))

2

4

6

8

10

12

14

16

T
ot

al
 fi

le
 s

iz
e(

M
B

)

Fig. 5. Compression of the fr1/room dataset. Octree decomposition, JPEG
2000 compression. The log10 of the chunk/voxel volume relative to the
scene’s bounding box volume is plotted vs. the file size. The bounding box
volume was (16.68m)3. The smaller the chunk size, the finer the local
granularity of the compression and decompression. Only below 10−3.5%
volume, the increase in file size becomes more evident.

Fig. 6. Compression results of the Thermobremen dataset, consisting of
40.7 million points (466MB), without colors, JPEG compression. MB vs.
RMSE (blue), MB vs. time (red, dotted line), voxel decomposition

online robotics applications. Furthermore it supports locally
decompressing parts of the data as they are required for
navigation or visualization purposes.

REFERENCES

[1] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T.
Silva. Computing and rendering point set surfaces. Visualization and
Computer Graphics, IEEE Transactions on, 9(1):3–15, 2003.

[2] C. Christopoulos, A. Skodras, and T. Ebrahimi. The jpeg2000 still
image coding system: an overview. Consumer Electronics, IEEE
Transactions on, 46(4):1103–1127, 2000.

[3] A. Cohen, I. Daubechies, and J.-C. Feauveau. Biorthogonal bases of
compactly supported wavelets. Communications on Pure and Applied
Mathematics, 45(5):485–560, 1992.

[4] J. Digne, R. Chaine, S. Valette, et al. Self-similarity for accurate
compression of point sampled surfaces. In Computer Graphics Forum,
volume 33, pages 155–164, 2014.

[5] T. Golla, C. Schwartz, and R. Klein. Towards Efficient Online
Compression of Incrementally Acquired Point Clouds. In J. Bender,
A. Kuijper, T. von Landesberger, H. Theisel, and P. Urban, editors,
Vision, Modeling & Visualization, pages 17–22. The Eurographics
Association, 2014.

[6] X. Gu, S. J. Gortler, and H. Hoppe. Geometry images. ACM
Transactions on Graphics (TOG), 21(3):355–361, 2002.

[7] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard. Octomap: An efficient probabilistic 3d mapping framework
based on octrees. Autonomous Robots, 34(3):189–206, 2013.

©IEEE

TABLE I
EVALUATION ON THE FR1/ROOM DATASET, WITH A COMPARISON TO THE NUMBERS REPORTED IN [26]. THE DATASET CONSISTS OF 315.5 MILLION

POINTS AND HAS A RAW INPUT STREAM SIZE OF 2.7GB. sc DENOTES THE COMPRESSED FILE SIZE, tc AND td THE COMPRESSION RESP.
DECOMPRESSION TIME, RMSE IS THE SYMMETRIC NEAREST NEIGHBOR RMSE. Voxel AND Octree DENOTE THE DECOMPOSITION METHOD, JPEG,

RESP. JPEG 2000 THE MAP COMPRESSION METHOD. p/tc DENOTES THE COMPRESSION SPEED IN POINTS PER SECOND.

Method sc RMSE (D/RGB) tc td p/tc
OctoMap 45MB 0.006m / 39.6 120 s n.a. 2.63 · 106
SCSM 8.1MB 0.005m / 29.9 1860 s n.a. 0.17 · 106
HSCSM 7.2MB 0.005m / 30.0 2160 s n.a. 0.14 · 106
Ours, Voxel, JPEG 7.07MB 0.005m / 26.6 43 s 2.7 s 7.33 · 106
Ours, Octree, JPEG 2000 2.97MB 0.005m / 27.2 71.5 s 4.7 s 4.41 · 106

TABLE II
EVALUATION ON DIFFERENT DATASETS. sc DENOTES THE COMPRESSED FILE SIZE, tc AND td THE COMPRESSION RESP. DECOMPRESSION TIME,

RMSE IS THE SYMMETRIC NEAREST NEIGHBOR RMSE. V(oxel) AND O(ctree) DENOTE THE DECOMPOSITION METHOD, JPEG, RESP. J2000 THE MAP

COMPRESSION METHOD. p/tc DENOTES THE COMPRESSION SPEED IN POINTS PER SECOND. Thb IS THE THERMOBREMEN, Ff AND Ff2 THE

FRANKENFORST DATASETS. w c. AND w/o c. DENOTE WITH RESP. WITHOUT COLORS.

Dataset Method Input size Points sc RMSE (D/RGB) tc td p/tc
Thb, w/o colors V, J2000 466MB 40.7 · 106 1.95MB 0.068m / – 5 s 1 s 8.14 · 106
Ff, w/o colors O, JPEG 499MB 43.6 · 106 0.40MB 0.017m / – 5.7 s 1 s 7.65 · 106
Ff2, w/o colors O, JPEG 3001MB 262.2 · 106 9.0MB 0.028m / – 24.9 s 2.33 s 10.5 · 106
fr1/room, 1st scan, w c. V, JPEG 3.4MB 0.22 · 106 0.11MB 0.0024m / 9.64 0.07 s 0.03 s 3.15 · 106
Thb, 1st scan, w/o c. V, JPEG 6.08MB 0.52 · 106 0.15MB 0.024m / – 0.15 s 0.095 s 3.46 · 106
Thb, 1st scan, w c. V, JPEG 6.08MB 0.52 · 106 0.22MB 0.024m / 1.19 0.18 s 0.095 s 2.88 · 106

[8] P. G. Howard, F. Kossentini, B. Martins, S. Forchhammer, and W. J.
Rucklidge. The emerging jbig2 standard. Circuits and Systems for
Video Technology, IEEE Transactions on, 8(7):838–848, 1998.

[9] Y. Huang, J. Peng, C. C. Kuo, and M. Gopi. A generic scheme for
progressive point cloud coding. IEEE Trans. Visual. Comput. Graph.,
14(2):440–453, Mar. 2008.

[10] Y. Huang, J. Peng, C.-C. J. Kuo, and M. Gopi. Octree-based
progressive geometry coding of point clouds. In Proceedings of the
3rd Eurographics/IEEE VGTC conference on Point-Based Graphics,
pages 103–110. Eurographics Association, 2006.

[11] E. Hubo, T. Mertens, T. Haber, and P. Bekaert. The quantized kd-tree:
Efficient ray tracing of compressed point clouds. In Proc. IEEE Symp.
on Interactive Ray Tracing, pages 105–113, Sept 2006.

[12] E. Hubo, T. Mertens, T. Haber, and P. Bekaert. Self-similarity-based
compression of point clouds, with application to ray tracing. In Proc.
Eurographics Symp. on Point-Based Graphics, pages 129–137, 2007.

[13] E. Hubo, T. Mertens, T. Haber, and P. Bekaert. Self-similarity based
compression of point set surfaces with application to ray tracing.
Computers & Graphics, 32(2):221–234, 2008.

[14] M. Isenburg. Laszip: lossless compression of lidar data. Photogram-
metric Engineering and Remote Sensing, 79(2):209–217, 2013.

[15] A. Kalaiah and A. Varshney. Statistical geometry representation for
efficient transmission and rendering. ACM Trans. Graph., 24(2):348–
373, 2005.

[16] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli, M. Beetz, and
E. Steinbach. Real-time compression of point cloud streams. In
Robotics and Automation (ICRA), 2012 IEEE International Conference
on, pages 778–785. IEEE, 2012.

[17] J. Krüger, J. Schneider, and R. Westermann. Duodecim - a structure
for point scan compression and rendering. In Proceedings of the
Symposium on Point-Based Graphics 2005, pages 99–146, 2005.

[18] S. Lloyd. Least squares quantization in pcm. Information Theory,
IEEE Transactions on, 28(2):129–137, Mar 1982.

[19] T. Ochotta and D. Saupe. Compression of point-based 3d models
by shape-adaptive wavelet coding of multi-heightfields. In Proc.
Eurographics Symp. on Point-Based Graphics, pages 103–112, 2004.

[20] T. Ochotta and D. Saupe. Image-based surface compression. In
Computer graphics forum, volume 27, pages 1647–1663. Wiley Online
Library, 2008.

[21] F. Ono, W. Rucklidge, R. Arps, and C. Constantinescu. Jbig2-the

ultimate bi-level image coding standard. In Image Processing, 2000.
Proceedings. 2000 International Conference on, volume 1, pages 140–
143. IEEE, 2000.

[22] M. Pauly and M. Gross. Spectral processing of point-sampled
geometry. In Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, pages 379–386. ACM, 2001.

[23] I. Pavlov. 7-zip. http://7-zip.org, 2015. accessed on February, 28th,
2015.

[24] R. Rubinstein, M. Zibulevsky, and M. Elad. Efficient implementation
of the k-svd algorithm using batch orthogonal matching pursuit. CS
Technion, page 40, 2008.

[25] M. Ruhnke, L. Bo, D. Fox, and W. Burgard. Compact rgbd surface
models based on sparse coding. In Twenty-Seventh AAAI Conference
on Artificial Intelligence, pages 1429–1435, 2013.

[26] M. Ruhnke, L. Bo, D. Fox, and W. Burgard. Hierarchical sparse
coded surface models. In Proc. of the IEEE Int. Conf. on Robotics
and Automation (ICRA), pages 6238 – 6243, 2014.

[27] R. Schnabel and R. Klein. Octree-based point cloud compression.
In Proc. IEEE/Eurographics Symp. on Point-Based Graphics, pages
111–120, 2006.

[28] R. Schnabel, S. Möser, and R. Klein. A parallelly decodeable
compression scheme for efficient point-cloud rendering. In Proc.
Symp. on Point-Based Graphics, pages 214–226, Sept. 2007.

[29] R. Schnabel, S. Möser, and R. Klein. Fast vector quantization
for efficient rendering of compressed point-clouds. Computers and
Graphics, 32(2):246–259, Apr. 2008.

[30] A. Skodras, C. Christopoulos, and T. Ebrahimi. The jpeg 2000 still
image compression standard. Signal Processing Magazine, IEEE,
18(5):36–58, 2001.

[31] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A
benchmark for the evaluation of rgb-d slam systems. In Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ International Conference
on, pages 573–580. IEEE, 2012.

[32] M. Waschbüsch, M. Gross, F. Eberhard, E. Lamboray, and S. Würmlin.
Progressive compression of point-sampled models. In Proc. Euro-
graphics Symp. on Point-Based Graphics, pages 95–102, 2004.

[33] J. Ziv and A. Lempel. A universal algorithm for sequential data
compression. Information Theory, IEEE Transactions on, 23(3):337–
343, May 1977.

©IEEE

