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In the scope of this supplemental material, we provide further imple-
mentation details of the components of our framework in order to
facilitate its reproducibility. In this context, we also extend the dis-
cussion of the hash map serving as underlying data structure in our
technique and provide an evaluation of our hashing approach with
respect to approaches followed in recent literature.

1 IMPLEMENTATION DETAILS

As mentioned in the accompanying paper, the main components of our
framework are given by the reconstruction client, the server and the
exploration client. In the following sections, we provide an in-depth
discussion of implementation details for these components.

1.1 Reconstruction Client
To allow a transmission in the order of reconstruction, we attach each
block added to the stream set with a unique counter. The transmission
of the data is performed by a separate worker thread which extracts
voxel block entries from the stream set up to the package size limit and
collects the corresponding voxel data until the capturing process has
ended and all data has been transmitted. Since InfiniTAM’s streaming
component allows blocks to be allocated in both volumes that results in
a delayed internal streaming of the block, we first lookup and copy their
data from the active visible volume and afterwards from the passive one.
Already retrieved voxel data are overwritten as we prefer the passive
version due to its higher robustness and lower susceptibility to noise.
Note that this decision has no impact on the quality of the final model
since at least one further update will be triggered once the active part is
streamed out and merged with the passive one.

Although our system is developed to reconstruct static scenes, ob-
ject interactions causing changes in the scene can still be handled to
provide an updated virtual model. On demand, the user performing the
acquisition can trigger a reset of the part of the scene that is currently
visible for the sensor under its current pose. The list of visible blocks
is then generated on the fly and all corresponding voxel data including
the queued blocks in the stream set are erased. To maintain consistency
across all users, the list is sent to the server which updates its model
accordingly, and again forwards the message to all exploration clients
which can then also reset the relevant parts of their models.

1.2 Server
The server component maintains both a copy of the transmitted TSDF
voxel block model and a bandwidth-optimized representation based on
Marching Cubes indices. Since only data from this optimized represen-
tation is transmitted to exploration clients, we store it in CPU memory
whereas the received TSDF voxel block model resides in managed
memory to allow fast processing with relaxed memory size restrictions.
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Recent NVIDIA GPUs and versions of the CUDA toolkit [6] support
managed memory which not only allows direct accesses from both the
CPU and GPU but also uses fast GPU-CPU paging to effectively relax
the memory limit to the CPU rather than the GPU memory size.

When a new package from the reconstruction client arrives, the
server first decompresses the data and integrates them into the TSDF
voxel block model by allocating new blocks for not yet inserted parts
and overriding already existing ones. In a second pass, we compute the
MC voxel block data of the received blocks and their seven neighbors
in negative direction, and add these blocks to each exploration client’s
stream hash set. In case a block is already inserted, the minimum of
both unique counters is stored to make the update order-independent
and to avoid holes in the client’s model due to delayed streaming.

1.3 Exploration Client

For HMD-based visualization, the scene has to be rendered twice each
frame, which results in a high memory bandwidth requirement for
reading vertex data, and a high computational burden for the vertex
shader. To cope with this, we store the position of each vertex relative
to the bottom-left corner of the mesh block. Since we limit the number
of voxel blocks inside a mesh block to 153, we can encode the position
using one byte per dimension. This leads to 8 bytes per vertex, i.e. 3
bytes per position, 4 bytes per color which is stored in RGBA format,
and 1 byte to align the structure. The client also stores all received voxel
blocks, together with the indices of the triangles and points generated
for them, in the CPU memory. This is needed for the case that a voxel
block is received twice, and the structure inside the block changes or is
deleted entirely, e.g. in case of partial resets of the model. If primitives
need to be removed from a mesh block, we set the alpha value of the
color to zero, which makes the primitives invisible and marks them as
removed. However, as these invisible primitives also need to pass the
vertex shader, we prune them by rebuilding the whole mesh block if
the amount of them passes a certain threshold.

After a reconstruction thread has processed the update or rebuild
for a mesh block, it is queued with all mesh blocks for which the
geometry data needs to be uploaded to the GPU. When rendering a
frame, we upload mesh data based on a predefined time window of
0.5 milliseconds. This time limit has proven to be sufficient to ensure
proper uploading to the GPU with low latency while providing a smooth
visual experience when rendering at 90Hz on a HMD.

To allow the visualization of fine texture details, e.g. required for
reading texts or measurement instruments, we transmit the current RGB
image from the reconstruction client upon request together with the
estimated camera pose and the known intrinsic camera parameters.
Using these data, the texture can be visualized in terms of a virtual 2D
display or by a direct projection into the scene model. After receiving
the data, the image is loaded into a texture which is passed to the
fragment shader together with the camera parameters. The fragment
shader first uses the camera parameters to project each fragment into
the RGB image to obtain pixel coordinates and then checks if the
coordinates lie within the texture boundaries. In this case, the texture is
sampled and the resulting color is used as a fragment color. Otherwise,
if the projected fragment lies outside the texture bounds, the fragment is
assigned the voxel color of the 3D model and its brightness is reduced.
This darkening of areas outside the projected image helps the user to
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focus on the relevant parts.

2 HASH MAP AND SET DATA STRUCTURES

In this section, we want to elaborate on the requirements and design
choices of our hash map data structure to realize a real-time remote
collaboration system. Key to an interactive user experience is a fast
and reliable data management that scales across multiple clients. Due
to its constant amortized runtime complexity for insertion, retrieval,
and removal and especially the successful integration into real-time
3D reconstruction GPU frameworks [1–3, 5], we have chosen spatial
hashing techniques to manage our data workflow.

2.1 General Design

Since the hash map and set data structure is heavily used in the whole
telepresence system, it must be highly reliable regarding insertion, re-
trieval, and removal to avoid artifacts such as holes in the exploration
client’s virtual model during transmission. In order to maintain key
uniqueness to avoid duplicate and inconsistent voxel data, the retrieval
operation must be performed – at least internally – inside insertion
and removal such that those duplicates can be detected and correctly
handled. Therefore, both concurrent insertion and retrieval, and con-
current removal and retrieval must be supported by the underlying
data structure. Although only these two concurrency requirements
are strictly required by our telepresence system, all major obstacles
regarding thread synchronization to enable concurrent insertion and
removal have also been implicitly resolved. Therefore, we also propose
a minor extension to the internal stack data structure which enables
full concurrency of insertion, removal and retrieval for the stack and
directly propagates this property to the hash map and set data structure.
We believe that our fully concurrent hash data structure is beneficial for
various applications beyond to spatial hashing (see Sect. 2.3).

Considering the design choices to implement such a hash map and
set data structure on the GPU, the actual implementation can be per-
formed either on a thread level or a kernel level. We designed it on a
thread level as this provides many important advantages compared to a
kernel-leveled version. Each operation is hidden behind a function and
enables very simple usage and a high re-usability across our system.
Furthermore, data management can be easily done in any scenario and
does not rely on additional synchronization steps. The most important
aspect, however, is that function or thread-leveled operations are im-
mune to synchronization errors from outside as the whole management
is performed inside the function. While kernel-leveled versions can
instead be hand-tuned to the particular scenario and may be faster, they
are less generic and more susceptible to subtle errors. In Algorithm 1
(retrieval), Algorithm 2 (insertion), and Algorithm 3 (removal), we pro-
vide more implementation details regarding the proposed thread-safe
hash operations.

Since a kernel-leveled implementation that also enforces the required
guarantees is provided in the open-source implementation of the origi-
nal voxel block hashing framework, which we consider an extension to
the originally proposed technique by Nießner et al. [5], we will evaluate
the implications in terms of runtime regarding this design choice.

2.2 Stack

One core element of our hash data structures is a stack structure that
manages the available linked list positions. This stack structure is ca-
pable of adding and removing elements to and from its end in parallel.
Although a simple implementation based on an atomic counter is suf-
ficient to make the insertion and removal operations thread-safe, we
extended it to support concurrent insertion and removal as this property
directly propagates to the hash map and set and requires no further
modification there. More details regarding these two operations are
provided in Algorithm 4 (insertion), and Algorithm 5 (removal). Thus,
we need to store the elements, indicators for each element determining
whether the entry is occupied, locks for synchronization, the current
size and the capacity of the container. Since the underlying arrays are
all preallocated, the maximum size is limited.

Active Volume

Hash Map

Voxel Block Pool

Transfer BufferStream Out Stream In

Passive Volume

Hash Map

Voxel Block Pool

Fig. 1. Our novel two-hash-map streaming approach does require any
knowledge about the hash map’s implementation details and allows to
adjust the size of each component independent of the others.

Insertion Similar to the simple counter-based approach, the in-
sertion position is obtained by atomically incrementing the size. In
particular, this operation reads the current value, increments and writes
it back, and finally returns the old read value. This minimizes synchro-
nization overhead since determining the position is decoupled from the
actual insertion. Next, we try to lock the entry at the acquired position
and check whether it is not yet occupied. Since concurrent insertion
and removal is supported, the entry might be occupied indicating that
another thread will remove it. In this case, we stop this attempt by
unlocking and repeat this step until success. This guarantees that the
operation order is correctly resolved. If the non-blocking locking oper-
ation succeeds and the entry is free, we write the given value into the
entry, mark it as occupied and finally release the lock.

Removal Returning and erasing the last element of the stack is
performed similar to insertion. First, we obtain the removal position by
atomically decrementing the size and, in addition to insertion, decre-
menting the returned value again to obtain the correct index. Then we
try to lock the corresponding entry, check whether it is occupied and
get its stored value. In case it is not occupied, we retry this step until
success to ensure a correct order of operations.

2.3 Applications
Besides the heavy usage within our telepresence system, our novel hash
map data structure is beneficial for several applications such as the ones
mentioned below.

Voxel Block Streaming Classical swapping techniques, that are
part of several out-of-core scenarios, are used to relax memory size
restrictions and enable applications that scale much better such as the
voxel block hashing pipeline with its CPU-GPU streaming component.
Whereas the original approach by Nießner et al. [5] uses a simple list
on the CPU-site to manage the streamed data, the InfiniTAM system [3]
reuses the GPU hash map to implicitly manage both the GPU and the
CPU volume using an index-based mapping and special flags to indicate
the streaming state. This introduced coupling between the hash map
size and the CPU volume size has been relaxed by Mossel and Kröter
[4], who added an auxiliary index array between these two to reduce the
memory footprint. However, all these approaches either shift at least



Table 1. Time measurements of our system for various numbers of connected exploration clients. We compared the time required to stream the
whole model with 512 blocks/request and 100Hz request rate to all exploration clients. Missing values refer to configurations where the GPU ran
out of memory. The reconstruction speed, given by the time until the reconstruction client (RC) transmitted the model with 512 blocks/request and
unlimited rate, serves as a lower bound. Across all scenes, the server can handle up to 2 and 6 clients at 5mm and 10mm voxel size respectively at
reconstruction speed. When the work load exceeds this speed, the performances of the server scales linearly with the number of clients.

(a) Time measurements when using the NVIDIA GTX 780 with 3GB VRAM in the server component.

Dataset Voxel Size [mm] Time [min] Model Size [# Voxel Blocks]
1 2 3 4 5 6 7 8 9 10 RC

heating room 5 - - - - - - - - - - 2:31 897 ×103

pool 5 - - - - - - - - - - 1:08 637 ×103

fr1/desk2 5 0:27 0:28 0:33 0:39 0:44 0:49 0:54 0:59 1:04 1:09 0:22 134 ×103

fr1/room 5 - - - - - - - - - - 0:56 467 ×103

heating room 10 1:44 1:44 1:44 1:44 1:44 1:51 1:58 2:07 2:15 2:23 1:44 147 ×103

pool 10 0:50 0:50 0:50 0:50 0:50 0:50 0:53 0:56 1:00 1:04 0:50 104 ×103

fr1/desk2 10 0:19 0:19 0:19 0:19 0:19 0:19 0:20 0:21 0:23 0:24 0:18 23 ×103

fr1/room 10 0:41 0:41 0:41 0:41 0:42 0:43 0:46 0:48 0:49 0:51 0:41 86 ×103

(b) Time measurements when using the NVIDIA GTX 980 with 4GB VRAM in the server component.

Dataset Voxel Size [mm] Time [min] Model Size [# Voxel Blocks]
1 2 3 4 5 6 7 8 9 10 RC

heating room 5 - - - - - - - - - - 2:31 897 ×103

pool 5 - - - - - - - - - - 1:08 637 ×103

fr1/desk2 5 0:27 0:28 0:31 0:37 0:43 0:48 0:52 0:58 1:02 - 0:22 134 ×103

fr1/room 5 1:01 1:04 1:13 1:22 1:34 1:46 1:57 2:08 2:15 - 0:56 467 ×103

heating room 10 1:44 1:44 1:44 1:44 1:44 1:50 1:58 2:06 2:13 - 1:44 147 ×103

pool 10 0:50 0:50 0:50 0:50 0:50 0:50 0:52 0:55 0:59 - 0:50 104 ×103

fr1/desk2 10 0:19 0:19 0:19 0:19 0:19 0:19 0:20 0:21 0:23 - 0:18 23 ×103

fr1/room 10 0:41 0:41 0:41 0:41 0:42 0:43 0:45 0:47 0:49 - 0:41 86 ×103

(c) Time measurements when using the NVIDIA GTX 1080 with 8GB VRAM in the server component.

Dataset Voxel Size [mm] Time [min] Model Size [# Voxel Blocks]
1 2 3 4 5 6 7 8 9 10 RC

heating room 5 2:40 2:40 2:58 3:19 3:41 4:00 4:26 4:44 5:14 5:33 2:31 897 ×103

pool 5 1:12 1:12 1:14 1:23 1:32 1:40 1:49 1:59 2:08 2:09 1:08 637 ×103

fr1/desk2 5 0:27 0:27 0:29 0:35 0:41 0:44 0:50 0:54 0:59 1:04 0:22 134 ×103

fr1/room 5 1:01 1:01 1:09 1:17 1:28 1:38 1:48 2:00 2:11 2:22 0:56 467 ×103

heating room 10 1:44 1:44 1:44 1:44 1:44 1:47 1:56 2:04 2:12 2:20 1:44 147 ×103

pool 10 0:50 0:50 0:50 0:50 0:50 0:50 0:51 0:54 0:58 1:02 0:50 104 ×103

fr1/desk2 10 0:19 0:19 0:19 0:19 0:19 0:19 0:19 0:20 0:22 0:24 0:18 23 ×103

fr1/room 10 0:41 0:41 0:41 0:41 0:41 0:42 0:43 0:44 0:46 0:48 0:41 86 ×103

one part to the CPU-cite or effectively use only a single GPU hash map.
In contrast, we use two hash maps: One for the active GPU and one for
the passive CPU volume (see Fig. 1). Both volumes are implemented
by pool data structures and both hash maps are allocated on the GPU so
that all data management can be performed efficiently in parallel. Only
the voxel block data buffer of the passive pool is stored in CPU memory
whereas the remaining parts reside in GPU memory which has several
advantages. First, there is no need for managing streaming-related
logic in the raycasting or fusion step to differentiate between active
and passive voxel blocks which completely decouples the streaming
component from the rest of the pipeline. Furthermore, we can drop the
requirement that the passive voxel block pool must have the same size
as the hash map since no index hacks or streaming state management are
needed anymore. This also avoids the auxiliary index buffer approach
of Mossel and Kröter [4] and moves and unifies all voxel block data
management to the hash map data structure. A direct consequence of
our approach is that during streaming, a voxel block might be allocated
in both the active and the passive volume when limiting the size of
the transfer buffer [3]. Therefore, we simplify the two-step copy-and-
merge streaming technique of InfiniTAM and consider merging as the
only needed operation. In particular, our transfer buffers do not store
indices to hash map entries but the actual inserted pointers to voxel
blocks together with the voxel block data. This also decouples the

streaming from the actual hash map implementation.

Beyond Spatial Hashing While we follow the specific hash func-
tion definition for 3D spatial hashing used by Nießner et al. [5] and
Kähler et al. [3], our data structure has no limitations regarding key-
value pair size or exchangeability of the actual hash function. Thus, it
can be applied to various problems beyond computer graphics that need
proper and reliable on-the-fly data management of millions of entries
on the GPU with enforced key uniqueness preservation. This includes
file indexing in data centers or large databases with non-standard data
in economics and other fields.

3 EVALUATION

Beyond the evaluation in the main paper, we provide a further assess-
ment of our novel remote collaboration system regarding the involved
projective texture mapping approach, the scalability of our server com-
ponent, as well as the runtime performance of our novel hash map and
set data structure. If not explicitly stated, we used the same parameter
set as described in the main paper for each experiment.

3.1 System Scalability
In order to evaluate the scalability of our server component, we mea-
sured the time until all connected benchmark clients received the whole



(a) Close-up of (b) (b) Reconstructed color texture. (c) Reconstructed color texture. (d) Close-up of (c)

(e) Close-up of (f) (f) Projection on virtual 2D display. (g) Projection on virtual 3D model. (h) Close-up of (g)

Fig. 2. Visual comparison of our projective texture mapping approach for the heating room dataset: In comparison to the reconstructed color texture
(top row), projecting the current input image on a virtual display device (f) as well as the reconstructed virtual model (g) improves remote collaboration
by allowing users to inspect fine details in the scene, which are crucial for decision making. Note that the brightness of the reconstructed texture is
decreased during texture mapping to emphasize the projection region. Furthermore, the brightness of the projected texture might vary according to
the camera’s automatically chosen exposure time.

reconstructed model from the server where the latter is equipped with
different GPUs. Throughout the experiment, the model is reconstructed
on the computer equipped with the NVIDIA GTX TITAN X, then
streamed to the server (second computer) and further to up to 10 bench-
mark clients (all on the third computer). The benchmark client is started
at the same time as to the reconstruction client, requests voxel blocks
with a fixed predefined frame rate of 100Hz, and directly discards the
received data to avoid overheads. Since all computers are within a local
network and the benchmark clients do not perform any processing, we
observed no measurement overhead compared to a setup with up to 12
computers where at most one benchmark client is executed on each of
them. For a comparison with weaker hardware, we equipped the server
with either a NVIDIA GTX 780 with 3GB VRAM, a NVIDIA GTX
980 with 4GB VRAM, or a NVIDIA GTX 1080 with 8GB VRAM for
our experiments. While a voxel block pool size of 220 blocks is used for
the NVIDIA GTX 1080 like in all other experiments, we lowered this
size to 219 blocks (NVIDIA GTX 980) and 218 blocks (NVIDIA GTX
780) to make the pool fit into the VRAM of the respective GPUs. Note
that this also affected the excess list size of the corresponding hash
map. Furthermore, we reduced the number of buckets to 221 buckets
for both the NVIDIA GTX 980 and NVIDIA GTX 780 to account for
the limited VRAM. The results of our experiment are shown in Table 1.

Across all scenes and GPUs, we observed that our server implemen-
tation is capable of handling up to 2 clients at 5mm and up to 6 clients
at 10mm voxel size at the speed of the reconstruction client. Further
increasing the number of clients in the benchmark affects the server per-
formance in a linear manner. For a voxel size of 5mm, the time until 10
benchmark clients received the whole model is more than twice as high
as the reconstruction times. Since parts of the model are rescanned dur-
ing reconstruction, the number of streamed voxel blocks is larger than
the model size which results in an enormous amount of data that need
to be processed and transmitted for each connected benchmark client.
Thus, the overall performance is mostly determined by the bandwidth

of both the CPU and GPU memory which becomes apparent when the
server is equipped with weaker hardware. Although the NVIDIA GTX
1080 has a significantly higher computational power, the time differ-
ence to a NVIDIA GTX 780 is only within a few seconds. However,
the major limitation of the weaker GPUs is the significantly smaller
memory size that prohibits the reconstruction of large models with a
fine resolution, i.e. 5mm voxel size (see Table 1(a) and Table 1(b)).
Note that this also limits the number of exploration/benchmark clients
since each of them is assigned a stream hash set. For the NVIDIA GTX
980 and the corresponding parameters as described above, only up to 9
benchmark clients can be handled by the server until the memory limit
is reached. Since the size of the voxel block pool is further reduced
by a factor of two for the NVIDIA GTX 780, more than 9 clients can
connect to the server, however, at the cost of limiting the reconstructed
models to even smaller sizes.

In addition to the evaluation regarding the scalability of the server
component, we also analyzed the GPU requirements at the exploration
client’s side. Since rendering the reconstructed scene does not involve
complex shading operations, the computational burden due to the num-
ber of triangles within the scene outweighs the computational costs
due to the resolution of the HMD. To meet the native frame rate of
90Hz for both eyes of the used HMD, we need to render 180 images
per second which results in a huge load on the vertex shader even for a
relatively low triangle count in the scene. Therefore, the rasterization
of the geometry for VR applications imposes a much higher compu-
tational burden than in the usual rendering scenario where only 60Hz
on a normal 2D screen are required. We observed that increasing the
distance in which the next level of detail (LoD) is rendered, or disabling
the LoD completely, which increases the number of processed triangles
per frame, has a greater impact on the frame rate than increasing the
rendering resolution beyond the display resolution of the HMD. Due
to this observations, we used the NVIDIA GTX 1080 GPU for the
exploration client and did not consider using less powerful GPUs.



Table 2. Runtime measurements of our hash map data structure for various scenes during reconstruction. We compared the mean (and standard
deviation) runtime in milliseconds to similar techniques that either operate on a thread level and allow failures, or on a kernel level with guarantees.
While our data structure guarantees successful insertion, it is much faster than kernel-based approaches and only slightly slower than unsafe
thread-leveled techniques.

Dataset Voxel Size [mm] Thread Level Kernel Level Model Size [# Voxel Blocks]
Multi Entry Single Entry Multi Entry Single Entry Ours

heating room 5 0.27 (0.06) 0.36 (0.08) 0.58 (0.15) 0.74 (0.18) 0.35 (0.07) 897 ×103

pool 5 0.28 (0.06) 0.37 (0.08) 0.63 (0.16) 0.80 (0.20) 0.37 (0.08) 637 ×103

fr1/desk2 5 0.25 (0.04) 0.29 (0.04) 0.57 (0.16) 0.65 (0.17) 0.29 (0.05) 134 ×103

fr1/room 5 0.29 (0.06) 0.37 (0.08) 0.67 (0.18) 0.82 (0.22) 0.37 (0.08) 467 ×103

heating room 10 0.14 (0.04) 0.16 (0.04) 0.32 (0.14) 0.37 (0.14) 0.16 (0.04) 147 ×103

pool 10 0.15 (0.04) 0.18 (0.05) 0.37 (0.14) 0.43 (0.15) 0.18 (0.05) 104 ×103

fr1/desk2 10 0.18 (0.04) 0.19 (0.04) 0.42 (0.16) 0.45 (0.16) 0.20 (0.04) 23 ×103

fr1/room 10 0.19 (0.04) 0.22 (0.04) 0.46 (0.15) 0.51 (0.15) 0.22 (0.04) 86 ×103
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(a) Kernel-leveled Data Structures.
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(b) Thread-leveled Data Structures.
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(c) Kernel-leveled Data Structures.
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(d) Thread-leveled Data Structures.

Fig. 3. Runtime comparison between hash data structures for the heating room scene at 5mm voxel resolution (see (a) and (b)) and for the fr1/desk2
scene at 10mm voxel resolution (see (c) and (d)).

3.2 Subjective User Experience

To evaluate the user experience, we conducted a study where 15 partici-
pants with ages between 25 and 57 years were immersed into the scene
as remote users. The participants were assigned the roles of mainte-
nance and safety experts and asked to fulfill related tasks. Depending
on the assigned role, they had to navigate through the scene to the
respective objects of interest and had to interact with the scene in terms
of performing measurements such as the size of objects, the heights of
objects above the ground as well as door heights and widths or reading
measurement devices. In general, most of the users got familiar with
the scene exploration via the teleport-operation to reach more distant
scene parts and physical movements to inspect the nearby environment
within about 30 seconds. Navigating to individual objects upon request
was easily performed by all of the participants. We observed that the
participants took great care to avoid collisions with scene contents and,
therefore, navigated around obstacles such as chairs and tables in office
environments or machines in the heating room scenario. In the heating
room scenario, all participants even crouched below tubes mounted at
the ceiling to access respectively interesting areas. Scene interaction
was measured in terms of user feedback regarding the easiness of the
measurement as well as the accuracy of the measured lengths. Most of
the users enjoyed the task of taking measurements and after taking a
few (about 5 - 10) measurements, they reached an accuracy of about
1cm to 2cm when measuring lengths between 10cm and 250cm. This
accuracy is influenced by both subjective factors of the user interaction

and the quality of the underlying model. The latter is affected by the
quality of the reconstruction that is determined by the voxel resolution
and sensor noise, the accuracy of the camera tracking as well as the
compression in terms of Marching Cubes voxels.

Regarding the model quality, the participants mostly rated the tex-
ture resolution to be acceptable and appreciated the possibility of high-
resolution texture projection of the live-image of the camera onto a
virtual 2D display device or the surface directly. Thereby, the partici-
pants were able to report e.g. the states of measurement devices and
were able to even recognize smaller objects (such as the WD-40 spray
as shown in the supplemental video). In addition, all users rated for
a high relevance of perceiving other remote users as well as the view
frustum of the RGB-D camera used for scanning within the same scene.
Thereby, the communication between the different users via headsets
was improved regarding the collaboration of the remote experts, e.g.
when analyzing the same scene parts, and regarding the collaboration
of the remote experts with the local user to guide the capturing process.

3.3 Projective Texture Mapping

In the following, we provide a qualitative evaluation of our projective
texture mapping approach. For this purpose, we demonstrate the quality
of the texture improvement over the typical accuracy of voxel block
hashing approaches in Fig. 2. We also measured the bandwidth impli-
cations for image requests and observed only a minimal impact since
the image data are efficiently compressed before transmission and such



(a) heating room. (b) pool.

Fig. 4. Reconstructed models of our datasets.

requests only occur rarely on the remote user’s demand.
Due to the limited voxel resolution, fine structures and object details

are blurred and, therefore, hardly visible in the reconstructed and trans-
mitted color texture (see top row of Fig. 2). Small alignment errors
during 3D reconstruction also affect the texture quality. In contrast,
the requested current RGB image projected on a virtual 2D display
(see Fig. 2(f)) has a much higher resolution and contains fine details.
Projecting the image onto the transmitted surface geometry leads to
similar results where object textures are much sharper (see Fig. 2(d)
and Fig. 2(h)). Since the projected texture represents the perspective
of the camera held by the local user, color values around object bound-
aries might be incorrectly projected onto adjacent objects due to the
imperfectly estimated camera pose. However, the users reported that
all the important details are clearly visible and such small errors as well
as the varying exposure time of the requested RGB image only slightly
affected the visual experience.

3.4 Hashing Performance

To verify the efficiency of our hash data structure, we provide a detailed
performance evaluation. Similar to the bandwidth analysis provided
in the paper, we used the scenes heating room and pool (see Fig. 4)
recorded with the Kinect v2 and two further datasets captured with
the Kinect v1 [7]. For the purpose of a fair comparison, we reimple-
mented and evaluated thread-leveled versions of the data structures
following the description by Nießner et al. [5], i.e. a multi-entry hash
map which resolves collisions through a neighborhood search, and by
Kähler et al. [3], i.e. a single-entry hash map with a stack data struc-
ture implemented via a simple atomic counter. While both of these
approaches do not provide strong guarantees beneficial in the context of
a remote collaboration system, they are still suitable for high-frame-rate
3D reconstruction. Since it is also possible to ensure successful inser-
tion and removal by looping over the kernel and testing whether the size
has changed, we further compare our thread-leveled data structure with
kernel-leveled multi-entry and single-entry versions as e.g. included in
the extended voxel block hashing framework accompanying the work
by Nießner et al. [5]. We used a bucket size of 220 buckets for all hash
maps as well as two entries per bucket for the multi-entry version and
excess list sizes of 219 elements for the single-entry and our version.
In order to evaluate the insertion performance of each approach and
minimize side effects by other parts of the voxel block hashing pipeline,
we measured the runtime of the voxel block allocation step. The results
of this comparison are shown in Table 2 and Fig. 3.

Across all scenes, we observed that the kernel-leveled approaches
are significantly slower, i.e. exhibit runtimes of more than a factor of
2, in comparison to their thread-leveled counterparts. This is a result
of the need for at least two calls of the kernel where in the second run
all insertion failures are corrected. Furthermore, obtaining the hash
map size involves additional costly and inefficient memory copies from
GPU to CPU memory. Note that kernel performance optimizations
could reduce the gap but this requires careful manual hand-tuning.

When comparing single and multi-entry approaches, we observe that
the multi-entry technique is approximately 20% faster since first-order
collisions are directly handled and no additional stack data structure
is required. However, this comes at the cost of an increased memory
footprint where most secondary entries remain empty and unused. Our
data structure’s performance is approximately on par with the other
thread-leveled approaches but provides the reliability of their kernel-
leveled counterparts without further hand-tuning.

We also observed that the runtime scales almost linearly with the
voxel size since the allocation step traverses over all visible blocks
in the view frustum. For datasets captured with the Kinect v1, the
difference between 5mm and 10mm resolution is less than for the
datasets recorded with the Kinect v2. This is mainly caused by the
lower field of view and the higher image resolution of the Kinect v1
sensor. Thus, the impact of the volume traversal is higher at 10mm since
more pixels try to the insert a single block. The hash map efficiently
handles this by immediately returning if the block has been already
inserted, thus keeping the cost in such cases as low as possible. Over
the course of time, the runtimes of all hash map data structures remain
constant (see Fig. 3(c) and Fig. 3(d)). At higher load factors where
more collisions are observed and also over the course of time (see
Fig. 3(a) and Fig. 3(b)), we observed slightly increasing values which
are caused by traversing colliding entries in the linked lists. However,
this impact is rather small compared to the total runtime and underlines
the constant amortized asymptotic complexity of hash data structures.
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Algorithm 1 Our Hash Map and Set Retrieval Function
Input: Key of the requested hash entry
Output: Pointer to corresponding hash entry if found, nullptr otherwise

1: function FIND(key)
2: index← bucket(key) . Check bucket
3: if occupancyFlags[index] = true and getKey(values[index]) = key then
4: return values + index
5: end if
6: while offsets[index] 6= 0 do
7: index← index + offsets[index] . Check linked list
8: if occupancyFlags[index] = true and getKey(values[index]) = key then
9: return values + index

10: end if
11: end while
12: return nullptr
13: end function

Algorithm 2 Our Hash Map and Set Insertion Function
Input: Key or key-value-pair to insert
Output: Pointer to inserted hash entry if inserted by this thread, nullptr otherwise

1: function INSERT(value)
2: result← nullptr
3: while find(getKey(value)) = nullptr do
4: result← tryInsert(value)
5: end while
6: return result
7: end function

8: function TRYINSERT(value)
9: result← nullptr

10: if find(getKey(value)) 6= nullptr then . Already inserted, so return
11: return result
12: end if
13: index← bucket(getKey(value))
14: if occupancyFlags[index] = false then . Bucket is free: Insert there
15: if locks.tryLock(index) = true then
16: if find(getKey(value)) = nullptr and occupancyFlags[index] = false then . Double check insertion and occupancy status
17: values[index]← value
18: atomicAdd(count, 1)
19: occupancyFlags[index]← true
20: result← values + index
21: end if
22: locks.unlock(index)
23: end if
24: else . Bucket is not free: Insert into linked list
25: linkedListEnd← findLinkedListEnd(index)
26: if locks.tryLock(linkedListEnd) = true then
27: if find(getKey(value)) = nullptr and offsets[linkedListEnd] = 0 then . Double check insertion and offset status
28: newLinkedListEnd← excessList.pop()
29: values[newLinkedListEnd]← value
30: offsets[newLinkedListEnd]← 0 . Must be reset to zero: Skipped in tryErase()
31: offsets[linkedListEnd]← newLinkedListEnd − linkedListEnd
32: atomicAdd(count, 1)
33: occupancyFlags[newLinkedListEnd]← true
34: result← values + newLinkedListEnd
35: end if
36: locks.unlock(linkedListEnd)
37: end if
38: end if
39: return result
40: end function



Algorithm 3 Our Hash Map and Set Removal Function
Input: Key of the to-be-erased hash entry
Output: True if the entry has been erased by this thread, false otherwise

1: function ERASE(key)
2: result← false
3: while find(key) 6= nullptr do
4: result← tryErase(key)
5: end while
6: return result
7: end function

8: function TRYERASE(key)
9: result← false

10: pointer← find(key)
11: index← pointer − values
12: if pointer = nullptr then . Already erased, so return
13: return result
14: end if
15: if index = bucket(key) then . Entry inside bucket
16: if locks.tryLock(index) = true then
17: if find(key) = pointer then . Double check removal status
18: occupancyFlags[index]← false
19: atomicSub(count, 1)
20: values[index]← default or hole value
21: result← true
22: end if
23: locks.unlock(index)
24: end if
25: else . Entry inside linked list
26: previousIndex← findPreviousEntry(index)
27: if locks.tryLock(index, previousIndex) = true then
28: if find(key) = pointer and findPreviousEntry(index) = previousIndex then . Double check removal and linked list status
29: if offsets[index] 6= 0 then
30: offsets[previousIndex]← offsets[previousIndex] + offsets[index]
31: else
32: offsets[previousIndex]← 0
33: end if
34: occupancyFlags[index]← false
35: atomicSub(count, 1)
36: values[index]← default or hole value . Do not reset offset[index]: Avoids synchronization in find()
37: excessList.push(index)
38: result← true
39: end if
40: locks.unlock(index)
41: locks.unlock(previousIndex)
42: end if
43: end if
44: return result
45: end function

Algorithm 4 Our Stack Push Function
Input: Value to push at the end of the stack

1: function PUSH(value)
2: pushed← false
3: index← atomicAdd(size, 1)
4: while not pushed do
5: if locks.tryLock(index) = true then
6: if occupancyFlags[index] = false then . Entry is free: Insert now, otherwise resolve push/pop order by reattempting
7: values[index]← value
8: occupancyFlags[index]← true
9: pushed← true

10: end if
11: locks.unlock(index)
12: end if
13: end while
14: end function



Algorithm 5 Our Stack Pop Function
Output: Extracted value from the end of the stack

1: function POP
2: result← default or hole value
3: popped← false
4: index← atomicSub(size, 1) - 1
5: while not popped do
6: if locks.tryLock(index) = true then
7: if occupancyFlags[index] = true then . Entry is not free: Extract now, otherwise resolve push/pop order by reattempting
8: occupancyFlags[index]← false
9: result← values[index]

10: values[index]← default or hole value
11: popped← true
12: end if
13: locks.unlock(index)
14: end if
15: end while
16: return result
17: end function
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