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Abstract

The combination of long established techniques in morphometrics with novel shape modeling approaches in geometry processing
has opened new ways of visualizations of shape variability in different application areas like biology, medicine, epidemiology and
agriculture. For the first time highly resolved 3D representations became accessible for statistical analysis as well as visualizations.
In order to reveal causes for shape variability targeted statistical analysis correlating shape features against external and internal
factors is necessary but due to the complexity of the problem often not feasible in an automated way. Therefore, visual analytics
methods found their way into the field of morphometrics. This led to numerous publications in recent years that might be subsumed
under the novel term visual shape analytics. In this paper we try to put these works into the context of visual analytics, outline the
basic principles underlying these approaches and review the current state of the art. Finally, future challenges and possibilities in
visual shape analytics are identified.
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1. Introduction1

In morphometrics and its application fields like medicine or2

biology experts are interested in causal relations of organismic3

shape to phylogenetic, ecological, geographical or epidemio-4

logical factors. In order to assist experts in getting insight into5

the variability of shapes and uncover potential sources a va-6

riety of different visual analytics methods for shape analysis7

has emerged in recent years that might be subsumed under the8

novel term visual shape analytics. These methods do not aim9

at a fully automated statistical analysis but instead rather pro-10

vide interactive tools for an effective exploration of shape vari-11

ation. This is achieved by means of interactive visualizations12

in order to stimulate quick hypothesis generation and feature13

assessment.14

The visualizations used frequently during morphometric stud-15

ies so far, were designed primarily for the purpose of commu-16

nicating final results of a statistical analysis [21, 56]. Only re-17

cently the potential of an interactive approach for exploration of18

shape spaces has been recognized and targeted analysis tools,19

especially for population studies that deal with large data col-20

lections were developed [20, 42, 53, 44] and as outlined by21

Botha et al. [17] further research is needed to come up with22

novel techniques to exhibit the complex correlations between23

shape variability and extrinsic as well as intrinsic factors.24

In this paper it is shown that the combination of methods25

from interactive computer graphics and visualization with meth-26

ods from statistical shape analysis deliver novel ways to inves-27

tigate and explore complex morphological inter-dependencies.28

Both domains have a long tradition at the IGD where not only29

interactive computer graphics techniques and visualization were30

early in the focus of research [72] and statistical shape models31

are extensively utilized in the context of medical image analysis32

Figure 1: The modeling pipeline for visual shape analytics.

until today [52]. Recently, a first Visual analytics approach to33

provide a better understanding of the impact of particular opti-34

mization algorithms for medical image segmentation and their35

parameters on a local scale were introduced by Landesberger et36

al. who continued this long tradition at the IGD [89].37

By reviewing the state of the art in modeling, navigation and38

visualization of shape spaces we summarize the current meth-39

ods and identify new trends in this emerging field.40

2. The visual analytics approach to shape analysis41

As already stated by Daniel Keim et al. [47] in their work42

about the foundation of visual analytics, Visual Analytics com-43

bines automated analysis techniques with interactive visualiza-44

tions for an effective understanding, reasoning and decision45

making on the basis of very large and complex data sets. The46

major task of visual shape analytics consists in linking abstract47

representations of the high dimensional shape space with a cor-48

responding 3D visualization in such a way that an effective nav-49

igation in shape space is enabled. This requires efficient auto-50

matic analysis techniques as well as real-time sampling in shape51

space and 3D visualizations.52

Initially, this idea of navigating shape spaces was brought53

forward in the work of Busking et al. [20], although they ex-54
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Figure 2: The user interface of a visual shape analytics system is usually split
into a 3D object view that provides different visualizations of shape variability
and linked abstract views like the shown interactive scatter plot.

cluded any automated analysis. They present a manual navi-55

gation in the abstract representation of the shape space that is56

presented as a scatter plot in a 2D projection of a linear shape57

space. The selection of a position in the scatter plot triggers58

the sampling of a shape in the linear shape space by interpola-59

tion of the adjacent shapes that are identified in the two dimen-60

sional domain. Although the individual techniques were im-61

proved later on, their work already outlines the general visual62

analytics approach, see figure 1. In a first step shape variabil-63

ity is represented by registration of the individual shapes of the64

shape ensemble against a template which often coincides with65

their mean shape [37]. Based on this registration the individ-66

ual shapes are represented by the transformation that deforms67

the template into the particular shape. After applying statistical68

analysis on the deformations novel samples are synthesized and69

can be visualized on demand. In the end this facilitates naviga-70

tion in shape space, that is, sampling shapes at particular points,71

along any direction or even arbitrary trajectories in abstract data72

space. This synthesis of deformation provides the basic explo-73

ration facility of the visual analytics approach and therefore also74

must be real-time in order to allow interactive exploration. The75

crucial aspect of visual analytics in this general setting is to76

support the user in intelligent navigation in shape space and to77

apply further statistical analysis when needed. This way a feed-78

back loop between statistical analysis and visualization is es-79

tablished. Following the visualization mantra “overview, zoom80

& filter, then details-on-demand” [77] methods targeting differ-81

ent levels of abstraction were developed, see table 1. All of the82

methods can be used in combination, enabling the user to drill83

down into sub spaces of shape space for a targeted analysis of84

particular local or global aspects of shape variation.85

Special care has to be taken to design a user interface ac-86

cessible to the domain experts. An example of such an user87

interface is shown in figure 2.88

3. Modeling of shape and its variation89

A mathematical definition of shape was given by David G.90

Kendall [48] who puts it as the idea to filter out effects resulting91

from translations, changes of scale and rotations and declare92

that shape is “what is left”. This does not only apply to surface93

and point data that is usually associated with the term shape, but94

also to the volumetric structure of an anatomy as represented in95

biomedical images. In contrast to landmark and surface repre-96

sentations the volumetric representation has the advantage that97

the internal structures are included in the analysis.98

3.1. Representation of shape difference99

Before the statistical analysis of variation, at least rigid trans-100

formations, i.e. translation and rotation, are factored out be-101

cause position and orientation are arbitrary, depending solely102

on the choice of some external coordinate frame. Sometimes103

the class of rigid motions is extended to similarity transfor-104

mations, including isotropic scaling, or even to the fully affine105

case, depending on the study at hand. After filtering out these106

affine transformations the remaining difference in shape is sub-107

sequently considered as the shape variation of interest. The re-108

maining difference between the shapes is captured by non-rigid109

deformations that establish dense correspondences between each110

shape and a template. In general the template itself is found111

during the computation of correspondences [93, 28].112

As a consequence of these considerations, whenever com-
paring two shapes via a transformation ϕ that maps one shape
onto the other, ϕ is decomposed into two parts

ϕ = ϕglobal ◦ ϕlocal. (1)

The global part ϕglobal accounts for non-shape differences and113

will be realized by a linear transformation as discussed. When114

comparing an ensemble of shapes against some template shape,115

all global parts will be factored out first in a preprocessing step.116

The particular procedure to do this is referred to as alignment.117

Thereby a common coordinate frame between the anatomies of118

an ensemble is established, i.e. the one of the template. After119

the alignment procedure, the remaining local parts ϕlocal are piv-120

otal to further analysis, as they represent the shape variation of121

the ensemble. In summary, one can say that ϕglobal defines what122

shape is, while ϕlocal encodes shape difference and variation.123

The transformation ϕlocal is parametrized via a displacement
vector field u(x)

ϕlocal(x) = x + u(x). (2)

that is computed via deformable image registration methods,124

see e.g. [81]. Very popular and successful in image registra-125

tion are physics-based deformation models [65] which com-126

prise diffusion based approaches including elastic body and vis-127

cous fluid flow models [33]. Also from this class are flows128

of diffeomorphisms that are implemented in the framework of129

large displacement diffeomorphic metric mappings (LDDMM)130

[9]. These are prominently introduced in computational anatomy131

and are especially suited to study anatomical variability [63] es-132

pecially in the case of large deformations [24]. Unfortunately,133

synthesis in LDDMM requires computationally very expensive134

algorithms like geodesic shooting [64], which are out of reach135

for interactive applications in the foreseeable future. A very136

promising alternative representation based on stationary veloc-137

ity fields (SVF) emerged recently [4, 5]. This method allows138

for efficient visualizations [44]. Alternative methods originated139

from interpolation theory. In contrast to the above displace-140

ment representation, these approaches are parametrized over141
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Sec. Method Purpose

4.1 Regression [13, 2] (f) Define a direction in PCA space that parametrizes a labeled attribute.
4.1 Classification [42] (d) Define a direction in PCA space corresponding to the characteristic shape difference between two groups.
4.1 Likelihood volume [21] (o) Integrated visualization of direction in PCA space, e.g. overview of principal modes.

4.2 Scatter plot [20] (d) Manual navigation in PCA space by specifying sample shapes via selecting positions in a scatter plot view.
4.2 Barycentric coordinates [80] (d) Manual navigation in shape space by specifying a linear combination as generalized barycentric coordinate

of a clicked point in a 2D convex polygon whose vertices represent the sample shapes.

4.3 Interaction tensor [43] (f) Targeted analysis of covariation between points on the shape, e.g. to identify hypotheses on module limits.
4.3 Model based editing [12] (d) Targeted analysis of covariation between points on the shape with respect to specific perturbation.
4.3 Region of interest [42] (f) Define a PCA space w.r.t. a selected ROI to focus investigation on particular local structures.

4.4 Group browser [44] (f) Comparative visualization of multiple factors by interpolating between group mean shapes.

Table 1: List of methods to navigate shape spaces, classified according to Shneiderman [77] into (o) overview, (f) focus and (d) detail view.

interpolating functions that provide a more compact representa-142

tion amenable to efficient optimization schemes. Important ex-143

amples are free form deformations (FFD) and thin plate spline144

(TPS) interpolation. For FFD the deformation is represented as145

low-degree B-splines on a coarse control grid [8, 74]. Rueck-146

ert et al. [71] introduced statistical deformation models based147

on FFD by applying PCA to the B-spline coefficients. TPS in-148

terpolate smoothly between given control points by minimizing149

bending energy [90] and are thereby a suitable way to augment150

the result of a landmark analysis to the space in between land-151

marks for visualization purposes. Drawbacks of the paramet-152

ric TPS and FFD approaches are, that they are not inherently153

diffeomorphic. FFD easily produces self-overlaps while TPS154

interpolation often yields implausible deformations away from155

its control points. Further, both methods provide only a limited156

resolution determined by the grid size in FFD and control point157

placement in TPS.158

3.2. Statistical deformation model159

The variability contained in a shape ensemble can be de-160

scribed using first and second order moments, i.e. mean and co-161

variance of the displacement vector field u. The analysis of this162

vector field can be reduced to multivariate statistics by treat-163

ing each voxel and each dimension separately. For this purpose164

it is convenient to consider the vector field as a long column165

vector u ∈ R3N where N denotes the number of voxels in the166

discretized image domain Ω.167

Based on the concept of linearity, the first moment is found
as the arithmetic average

ū =
1
n

n∑
i=1

ui. (3)

If the template shape coincides with the mean shape then ū =

0 and the displacement fields constitute the data matrix X =

[u1, . . . ,un] ∈ R3N×n. From this, the second moment is esti-
mated as the 3N × 3N sample covariance matrix Σ = 1

n−1 XXT .
In order to ease interpretation of covariance, a principal compo-
nent analysis (PCA) is performed that provides an uncorrelated
basis B of dimension n′ ≤ n − 1 in which the covariance matrix
becomes diagonal. Note that each column vector of B repre-
sents itself a deformation encoded as displacement vector field

and is termed mode of (shape) variation. Taking linear combi-
nations of these modes constitutes a generative model

u = Bc (4)

where c = (c1, . . . , cn′ )T should be chosen with ci ∈ [−3,+3]
conforming to a range of three standard deviations σi of the
underlying normal distribution model:

p(c) = (2π)−n′/2 e−
1
2 ‖c‖

2
.

An important drawback of models derived by PCA is inher-168

ent dependency of the result on the L2− metric, which favors169

low frequency changes of the shape that corresponds to global170

shape variations but neglect subtle details whose shape varia-171

tions is often spread over several modes. In order to overcome172

this problem locally weighted PCA can be applied [42].173

While the above linear model of the shape space is sufficient
for small displacements, i.e. if ‖u(x)‖ is small, which holds for
example for most genetic studies, it fails to describe larger vari-
abilities among a population, that in biology for example are
caused by ecological factors. In this case the underlying linear
shape space and the linear mean (3) is replaced by consider-
ing the non-linear manifold of diffeomorphisms and the Fréchet
mean. For a smooth manifold X endowed with a metric d, the
Fréchet mean of a set {x1, . . . , xn}, xi ∈ X, if it exists and is
unique, is defined as

x̄ := arg min
x∗

1
n

n∑
i=1

d(xi, x∗)2. (5)

In order to compute the Fréchet mean, several group-wise
registration approaches have been developed [38, 6, 46] by defin-
ing a suitable metric on the space of deformations based on (5).
Starting from a candidate image, the general concept is to it-
eratively update this image such that the average of squared
geodesic distances between template and each individual ap-
proaches a minimum. In the context of geometric modeling
custom designed metrics in the space of linear transformations
was introduced by Alexa [1] and later on generalized by Kil-
ian et al. [49] to as-isometric-as-possible deformations between
registered 3D meshes. Unfortunately, the calculation of geodesic
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distances is computationally expensive and in general not pos-
sible in real-time [64]. A compromise is restricting the space
of diffeomorphisms to the ones that are generated by SVFs
as suggested by Arsigny et al. [4]. While in the LDDMM
framework [9] a diffeomorphic mapping ϕ is constructed as the
endpoint ϕ = Φ1 of the flow of a time-varying velocity field
vt : Ω −→ Rn, t ∈ [0, 1] specified by

d
dt

Φt = vt(Φt) (6)

leading to a path Φt : Ω −→ Ω, t ∈ [0, 1] in the tangent space
of the Riemannian manifold of diffeomorphisms starting with
Φ0 = Id and terminating at the endpoint

ϕ := Φ1 = Φ0 +

∫ 1

0
vt(Φt)dt (7)

matching the given image, the restriction to a stationary flow
vt = v simplifies the integration tremendously while still being
sufficiently expressive to describe large deformations as demon-
strated by successfully modeling the variability of a range of
different anatomies [5, 16, 76]. Even more important, in the
case of SVFs the resulting family of flows Φt, t ∈ [0, 1] is a
one-parameter subgroup of diffeomorphims with infinitisimal
generator v. By defining the exponential map of a stationary
vectorfield v as the diffeomorphism obtaind by

exp(v)(x) := ϕ(x) = Φ1(x) = Φ0(x) +

∫ 1

0
v(Φt(x))dt , (8)

the logarithm log(ϕ) of a diffeomorphism ϕ close enough to
identity is the unique vector field v in a neighborhood of zero
such that exp(v) = ϕ. Of special interest for visual shape ana-
lytics and a key advantage of this approach is that it allows for
log-euclidean statistics on diffeomorphisms. The log-domain,
where velocity fields live, offers a natural linearization

ϕa ◦ ϕb = exp(va) ◦ exp(vb) = exp(va + vb) (9)

that is lifted to the diffeomorphic group structure by integration,
i.e, on the log-space of diffeomorphisms one can perform Eu-
clidean operations. As a direct consequence the average ϕ̄ of a
set of deformations {ϕ1, . . . , ϕn} can be computed as

ϕ̄ = exp(v̄) with v̄ =
1
n

n∑
i=1

vi where vi = log(ϕi) (10)

and the same linear PCA statistics as described above can be
applied on the set {vi} of logarithms resulting in a generative
model

vĉ = B̂ĉ (11)

with a basis matrix B̂ of principal velocities. Note, that in ap-174

plications the logarithm is often provided by the registration175

algorithm.176

4. Navigation in shape space177

A particular focus of application of shape space represen-178

tations in computer graphics is effective authoring of 3D con-179

tent by means of interpolation in available 3D model databases,180

see [13, 2, 3] to cite just a few works in this field. In computer181

vision [26, 18] and medical image segmentation [41] shape space182

representations are used to introduce model knowledge. A spe-183

cial advantage in all these works is their combination of statisti-184

cal analysis and efficient synthesis to generate novel 3D shapes185

that are plausible w.r.t. a statistical model. This is exactly what186

is necessary for interactive visual exploration of shape variabil-187

ity in the context of visual shape analytics. However, in order188

to enable targeted exploration of a shape ensemble additional189

methods for navigation in shape space are required. A key chal-190

lenge in this context is to make the high dimensionality of shape191

spaces accessible.192

4.1. Navigation along traits193

A first idea on this was already given by Blanz and Vet-194

ter [13] who parametrized the shape of human faces via re-195

gression on semantically motivated traits like age, sex, weight,196

etc. in PCA space. They demonstrated that exaggerating these197

traits can be used to create easily understandable caricatures of198

certain type. Matusik et al. [62] showed that navigation along199

traits is an effective means of identifying specific characteris-200

tics in the context of reflectance functions. In the context of201

visual shape analytics this idea was applied to relate shape vari-202

ation to external attributes by Hermann et al. [42]. In this work203

trait vectors in shape space are derived interactively from exter-204

nal attributes by training a support vector machine. Navigating205

along the resulting trait vector is simultaneously visualized in a206

two-dimensional scatter plot and a 3D-object view that shows207

the corresponding variation as a deformation of the template.208

4.2. Navigation via scatter plots209

Manual exploration using two dimensional views as inter-210

faces for navigation were suggested by several authors. Kil-211

ian et al. [49] present a shape exploration based on barycentric212

interpolation between example shapes. To this end a 2D em-213

bedding view of the shape ensemble is derived via multidimen-214

sional scaling (MDS) followed by a triangulation. By drawing215

curves in this view, arbitrary interpolations can be explored. In-216

stead of a triangulation, Smith et al. [80] rely on generalized217

barycentric interpolation inside a convex control polygon that,218

by clicking a point inside the polygon, allows the user to dial up219

a particular affine combination of a set of registered car shape220

models. Additional regression values on specific attributes like221

sportiness are overlaid on the polygon for guidance. For the222

specific case of mesh animations, Cashman et al. [22] use a223

combination of MDS and radial basis functions to come up with224

a 2D map visualization of the animation as a spline curve. On225

this map, a repetitive motion will for instance show up as a226

curve with several loops. By manipulating the curve, the ani-227

mation can be edited in a high level way. Busking et al. [20] use228

a scatter plot that shows a 2D projection of PCA space. The pro-229

jection can be adjusted interactively by manipulating 2D repre-230

sentations of a set of axes or vectors in shape space [11]. For231

synthesis of shapes in-between sample points in the 2D projec-232

tion natural neighbors interpolation is used, based on a Voronoi233

tessellation that is computed efficiently on the GPU. Klemm234
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et al. [53] use multiple linked views to explore medical popu-235

lation data for epidemiology, e.g. to identify disease-specific236

risk factors. Aim of their interactive visual analysis is parame-237

ter and group selection for subsequent statistical analysis. The238

data also includes MR images from which 3D surface models of239

the lumbar spine are semi-automatically extracted. During ex-240

ploration, mean shapes of selected groups are displayed while241

their color encodes the difference to the global mean shape.242

4.3. Direct manipulation approaches243

An interesting alternative to interaction with abstract 2D244

views and scatter plots are direct manipulation approaches to245

explore and generate shape variations. Probably one of the first246

approaches in this regard is model based editing introduced by247

Blanz et al. [12]. Based on the user modifying the position248

of just a few feature points their approach optimizes the most249

likely shape that matches the user input as closely as possible.250

Thanks to the linearity of the PCA model this optimization turns251

out to be a simple least squares problem that can be solved effi-252

ciently. Lewis and Anjyo [59] pick up the same idea for editing253

facial blendshape models while Tena et al. [82] and Berner et254

al. [10] present generalizations of this approach to part based255

shape models. Coffey et al. [25] present an interactive manip-256

ulation interface to navigate the space of simulation outputs in257

order to refine the design of a mechanical biopsy device, tak-258

ing into account its functionality. Interestingly, the metaphor259

of direct spatial manipulation has been recently applied also to260

time-varying scatter plots [57], where dragging around a point261

facilitates navigation in time by matching the input to an exist-262

ing point and its temporal trajectory. Hermann et al. [43] used263

the model based deformation to analyze covariance on shapes.264

The basic idea of their approach is to reinterpret and extend the265

model based editing introduced by Blanz et al. to either observe266

the shape change correlated to the perturbation of a single point267

that is dragged by the user or to perform a covariance analysis268

between possible edits at a single point and its impact on other269

points on the surface. The single point edit nicely uncovers the270

dependency of shape variability on directional changes of a cer-271

tain structure as shown in figure 3. The covariance analysis be-272

tween the edit at a single point and its impact on the rest of the273

shape is summarized by two alternative methods, see figures 3274

and 4. First, the effect on a point q of a perturbation of unit size275

towards arbitrary directions at a point p is captured at the point276

q by the covariance matrix of the corresponding changes at q.277

Second, to summarize the possible influence of perturbations of278

a point p this covariance structure is integrated over the remain-279

ing positions leading to a covariance matrix that indicates both,280

strength and its dependence on direction of perturbations of p.281

All three methods are of special interest in the biological con-282

text of modularity and integration. This relates to partitioning a283

shape into modules such that the perturbations inside a module284

are integrated, but are relatively independent from other mod-285

ules [54]. Integration here refers to the degree that particular286

shape characteristics depend on each other, see figure 4.287

Figure 3: Covariance tensor visualization of Hermann et al. [43]. (a) An
overview guides the expert to points that exhibit interesting covariation. (b,c)
Covariation analysis of the impact of perturbation at a particular point into ar-
bitrary directions reveals the associated covariation patterns.

Figure 4: Model based editing allows to investigate shape covariation depend-
ing on a perturbation of a single point on the shape into specifc directions [43].
This assists in identifying integrated modules of the shape, i.e. parts on the
shape that exhibit strongly correlated shape changes (see text).

4.4. Navigation of subensembles288

For industrial CT images comparative visualizations were289

made for the analysis of defects for material sciences [69]. In290

order to visualize the shape distribution of a set of feature ob-291

jects, pores or other material defects in form of an uncertainty292

cloud the concept of mean objects was introduced. Cluster-293

ing of mean objects provides a hierarchical representation well294

suited for exploration. A key difference to navigation in shape295

space where the dense registration between the individual shapes296

is crucial, the defects need only to be coarsely aligned.297

A common task for exploratory morphometric analysis is to298

disentangle the factors that determine shape variation. This was299

achieved by Hermann et al. [44]. In this work categorical fac-300

tors decompose the shape ensemble into subsets, for instance301

into several phylogenetic or dietary groups. In order to unveil302

the impact of each factor on shape variation, mean shapes of the303

corresponding subsets are derived on the fly, enabling interpo-304

lation in-between group means and the ensemble template. An305

example of browsing group means is given in figure 5.306

5. Visualization of shape variability307

Although visualization plays such a central role in shape308

analysis, there seem to be only two articles published yet that309

give sort of a survey [56, 21]. Klingenberg [55] critically dis-310

cusses common visualization methods for landmark analyses in311

geometric morphometrics and provides helpful guidelines for312

practitioners. Different visualization options for statistical de-313

formation models used in computational anatomy are compared314

by Caban et al. [21] and evaluated in a small user study. Both315

works contribute valuable insights about effectiveness and lim-316

itations of many important visualization techniques. However,317
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Figure 5: Browsing mean shapes of different groups related to extrinsic fac-
tors like phylogeny and diet in this example allows comparative analysis of the
impact of these factors onto anatomy [44]. The ensemble mean is highlighted.
c©2015 IEEE. Reprinted, with permission.

some often encountered visualizations such as color coded iso-318

surfaces or vector fields are missing in the mentioned surveys,319

and animation is not discussed either. Therefore a structured320

presentation of available techniques including the previously321

left-out ones seems in order.322

5.1. Taxonomy and review of visualization techniques323

Visualization techniques can be grouped by their primary324

underlying visual paradigm: Superimposition and side-by-side325

comparison relate to spatial layout, direct visualization focuses326

on ways to display deformation by warping methods, encoded327

visualization is about the use of color-coding and glyphs to328

communicate higher order information and finally, animation329

deals with the temporal dimension.330

Superimposition. The original shape samples are shown331

superimposed in a reference coordinate system, e.g. given by332

Procrustes alignment. This kind of display is quite common and333

effective for 2D landmark and contour data [56] and is used in334

many publications and textbooks in geometric morphometrics.335

An advantage is, that it does not require a deformation or statis-336

tical model per se. Nevertheless, plotting for instance superim-337

posed landmarks yields point clouds whose distributions reveal338

the local covariance structure at each landmark. Superimpos-339

ing contour data gives a good overview of global variability but340

quickly becomes cluttered for many contours. In our experi-341

ence, this cluttering becomes even worse when superimposing342

3D surfaces [7], because of the additional occlusion interfering343

with the superimposition. In practice we observe that at most344

three surfaces are shown superimposed using alpha blending345

and contrasting colors, see e.g. RegistrationShop [79]. Super-346

imposition is also used to assess results of pairwise registra-347

tion of surfaces or images. The interactive 3D volume registra-348

tion system of Smit et al. [79] makes use of multi-volume ren-349

dering to superimpose fixed and moving volume, color-coded350

and opacity blended to reveal areas of mis-registration. The351

checkerboard method is an alternative way of superimposition352

of two 2D images (or slices of a volume) that does not require353

blending. The white squares of the checkerboard offer a view354

onto one of the images, the black squares onto the other. A gen-355

eralization of this technique to more than two images was pre-356

sented by Malik et al. [61] and a generalization to tensor field357

visualization was recently given by Zhang et al. [95]. Likeli-358

hood volumes [21, 45] can be understood as a generalized su-359

perimposition of 3D images by means of blending more than360

two images. An efficient implementation of a likelihood vol-361

ume for non-linear deformation model (11) was presented by362

Hermann et al. [44] where it is used as an overview visualiza-363

tion. When sampling a deformation densely, likelihood vol-364

umes produce a visualization resembling motion blur. A simi-365

lar approach was taken to visualize the uncertainty of estimated366

isosurfaces [68, 66].367

Side-by-side comparison. Instead of superimposing one or368

more shapes in a single view, multiple views can be employed369

as well. This provides an alternative in cases where superimpo-370

sition is not applicable or would lead to a cluttered display. Un-371

fortunately, small scale shape variations are hard to recognize.372

Following Tufte’s small multiples [87], a small-scale shape ren-373

dering can serve as an iconic representation that allows compar-374

ative displays showing many shapes at once. This technique is375

used for instance to overlay small shape renderings on a scatter376

plot showing a 2D projection of shape space [20].377

Direct visualization. This paradigm subsumes approaches378

that depict deformations explicitly by deforming a graphical379

representation of the shape or the embedding 3D space. Show-380

ing a distorted Cartesian grid is amongst the classic methods to381

illustrate anatomic deformation, as it was already introduced by382

D’Arcy Thompson [83] and even earlier by Artists like Dürer383

and Da Vinci in their anatomical studies. While these early384

examples were hand-crafted, the first automatic graphics pro-385

cedure was introduced by Bookstein [14] based on thin-plate386

spline (TPS) interpolation of space in between landmarks. This387

remains one of the dominant visualizations in morphometrics388

to this day [56] and can be used to deform grids as well as389

shape representations. A reason for the popularity of direct390

space warping techniques is probably that they can be applied391

to landmark and surface data in 2D or 3D in the exact same392

manner. Wiley et al. [91] use TPS for instance to interpolate be-393

tween known sample shapes from an evolutionary tree to gener-394

ate hypothetical ancestral shapes. Somewhat a hybrid between395

direct and encoded visualization (see below) are the deformable396

grids [23, 21]. Initially developed for 2D uncertainty data [23]397

they were generalized to show anatomic variation from statis-398

tical deformation models in 3D by Caban et al. [21]. A very399

coarse grid is overlaid onto the image and deformation is vi-400

sualized by modulating the depiction of grid edges, e.g. by401

drawing an edge as a sinusoid curve with the local deformation402

magnitude mapped to its amplitude.403

Encoded visualization. In contrast to direct visualization,404

methods that fall under this paradigm visualize particular as-405

pects of deformation implicitly by means of color coding or406

glyph rendering. Scalar attributes are easily visualized via color407

coding by applying a transfer function that maps the scalar value408

range to some color gradient. In computational anatomy one of-409

ten encounters variability and probability maps that color code410

magnitude of local variability and outcome of statistical tests411

respectively [84]. Hamarneh [39] use color coding to show412

“hot spots” of localized shape variation. Lüthi et al. [60] use413

color coding to visualize the remaining flexibility of a statistical414
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shape model after parts of it have been fixed, for instance by a415

semi-automatic model based registration procedure. Zollikofer416

and Ponce de Léon [96] show a successful combination of color417

coding and vector field visualization on 3D surfaces to commu-418

nicate deformation decomposed into directions parallel (vector419

field) and perpendicular (color) to the surface. Kirschner and420

Wesarg [51] present an implementation of this kind of visual-421

ization in an interactive system for active shape models.422

Kindlmann et al. [50] visualize anatomic covariance tensor423

fields using superquadric tensor glyphs that summarize the lo-424

cal covariance structure at each sample point on the surface of a425

mean shape. For each point a 3×3 sample covariance matrix on426

the set of displacement vectors from the mean to each individ-427

ual is computed. Additional scalar measures derived from the428

covariance tensor data like fractional anisotropy and Frobenius429

norm are used for color coding glyphs and shape surface respec-430

tively. The same glyph visualization is used for the covariance431

tensors described in Hermann et al. [43]. Van Golen [88] uses432

custom glyphs to show the influence of each landmark on an ac-433

tive shape model, i.e. how strongly the overall shape variation434

described by the model depends on a particular landmark.435

When dealing with image based shape models, deforma-436

tions are often represented as dense vector fields. This enables437

vector field visualization methods like color coding of Jaco-438

bians [70], detection of critical points and display via glyphs [85]439

or color coding custom tailored scalar flow measures [19]. Stream-440

line rendering is another vector field visualization method [76]441

that was used by Hermann et al. [44] to uncover the tangential442

component of non-linear shape variations.443

Animation. Showing a particular variation as image de-444

formation in an animated way is an ideal presentation to the445

human eye [84, 58]. It allows to utilize the excellent motion446

perception capabilities of humans that renders small deforma-447

tions much better perceivable than from a set of static images.448

Therefore, animation is one of the preferred visualizations in449

many approaches. It is an obvious choice when illustrating dy-450

namic processes like respiratory motion of lungs and inner or-451

gans in humans. Handels and Hacker use animation to present452

an interactive anatomical atlas [40], exemplary modeling the453

kidney via a medial representation [35]. Real time animation,454

while easy to achieve in principle for 3D surface models, poses455

a challenge for 3D image models. This results from the fact that456

3D image warping involves the inverse mapping, that is com-457

putationally expensive to approximate. An in-depth discussion458

of that fact is given in Hermann et al. [44] who take advantage459

of the log-domain framework to compute the inverse.460

6. Future challenges461

Visual analytics is still a young field and we expect that ap-462

plying its basic ideas to different applications in visual shape463

analytics offers the potential for a lot of novel future work. Es-464

pecially the high potential of visual analytics methods to steer465

and optimize parameter selection for complex computational466

models in an interactive way like the segmentaton derived from467

the covariance analysis for the analysis of shape variation is468

worthwhile to be investigated in furhter application areas. We469

believe that some of the presented visual shape analytics tech-470

niques could be adapted to investigate the quality of registra-471

tion and the statistical models themselves. This way parameter472

settings of the registration algorithm can be optimized which473

might also improve the resulting statistical shape model this474

way closing the loop [79]. This reflects a recent trend of ap-475

plying visual analytics to optimize parameter settings for im-476

age segmentation and analysis algorithms, like in [67, 86, 73,477

89, 36]. There is a lot more potential to apply some of the al-478

ready well established techniques to visual shape analytics, e.g.479

in providing custom linked views to intuitively assess partic-480

ular extrinsic attributes via a geographic map, a phylogenetic481

tree or a Manhattan plot for specific genetic analyses. In the482

future we hope to see more applications of the presented meth-483

ods in morphometric and computational anatomy studies. Es-484

pecially population studies provide an ideal application domain485

because of their exploratory nature [17, 53]. Furthermore, we486

foresee also novel applications for high-throughput phenotyp-487

ing of time-varying shape data as nowadays efficient acquisi-488

tion devices became standard for example in the agricultural489

domain [32, 31]. In this context there is also potential to apply490

the outlined methods for part-based models.491

From a technical point of view we see several directions492

for future work. Interactive applications for medial represen-493

tations [35] for instance would provide another very powerful494

non-linear statistical model, namely principal geodesic analy-495

sis [34]. Another example in this context would be the recent496

model of Durrleman et al. [29] that describes dense deforma-497

tions with sparse parameters and can thereby also handle vary-498

ing topologies, including cases that do not allow a perfect regis-499

tration. A further challenge are hierarchical shape models that500

allow investigation of shape variation at multiple scales. There501

exist several promising approaches utilizing different decompo-502

sitions of shape variation, either based on wavelet theory [27]503

(particularly popular in medical image analysis [92, 94, 30]),504

sparse PCA [78], polyaffine transformation tree [75] or defla-505

tion of principal warps [15]. However, effective means of nav-506

igating complex multiscale representations have only sparely507

been addressed so far, partly because the complexity of some508

of the methods rules out an interactive approach.509

7. Conclusion510

Visual analytics methods have found application in nearly511

every domain that requires the analysis of large datasets of high512

dimensional data, ranging from financial market to climate re-513

search. In summary we can state that recent developments in514

visual shape analytics has proven to be a valuable approach515

to study shape variability. It requires algorithms for analysis,516

navigaton and visualization that are capable of interactive per-517

formance. So far, such an interactive shape analysis was re-518

stricted to landmark and surface models. Using the efficient519

linear parametrizations of shape variability allows now to op-520

erate even on volumetric deformation models describing shape521

variation at image resolution at interactive rates. This allows us522

to also consider interior structures and diminutive features that523

7



were not accessible to previous landmark and surface based ap-524

proaches. As shown in this paper the most crucial part of an525

visual shape analytics system is the interactive navigation in526

shape space that is assisted by intelligent methods like auto-527

matic computation of semantic traits or tailored visualization528

techniques like covariance tensor glyphs.529
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