Integrated High-Quality Acquisition of Geometry and Appearance for Cultural Heritage

Christopher Schwartz, Michael Weinmann, Roland Ruiters, Reinhard Klein

Institute of Computer Science II Computer Graphics universitätbonn

Outline

- Motivation
- Previous Work
- Overview
- Acquisition
- Postprocessing
- Results
- Conclusion

MOTIVATION

Motivation

- Digitization of CH artefacts
 - Public dissemination (see my talk tomorrow)
 - Exchange between experts and institutions
 - Novel tools for research

Motivation

- The "shapes" of objects are scanned in HQ
- ... but what about "appearance"?

With texture

Correct appearance

Geometry only

Object Appearance

- Impression of reflection of incident light
- Influenced by features on different scales
 - Macroscopic
 - Mesoscopic
 - Microscopic
- Viewpoint and Illumination dependent

Form of Representation

Macroscopic scale

- 3D shape
- Explicit representation (e.g. polygon mesh)

Mesoscopic scale

- Individually resolved by human perception
- Statistical representation not accurate
- Explicit representation too costly

Image based!

Microscopic scale

- Alignment of microscopic structures
- Statistical representation (e.g. BRDF)

Form of Representation

Form of Representation

Macroscopic scale

- 3D shape
- Explicit representation (e.g. polygon mesh)

Mesoscopic scale

- Individually resolved by human perception
- Statistical representation not accurate
- Explicit representation too costly

- Alignment of microscopic structures
- Statistical representation (e.g. BRDF)

Bidirectional Texture Function

Why BTF?

- Data-driven
 - No model assumption
 - No statistical approximation
- High compression ratios
- Good rendering properties
 - Full light transport simulation
 - Realtime
- Streamable over the Internet
 - see my talk tomorrow

PREVIOUS WORK

11 26/10/2011

VAST 2011 – Prato, Italy – Christopher Schwartz

Previous Work

Lensch et al. 2003: SVBRDF + external geometry

- Good geometry
- Analytical BRDF model assumption
- Mesoscale only indicated with normal-mapping
- Separate acquisition <a>registration problem

Müller et al. 2005: BTF + shape from silhouette

- Meso- and Microscale effects captured with BTF
- Integrated acquisition
- Poor geometry

Holroyd et al. 2010: SVBRDF + structured light

- + High-quality geometry
- Integrated acquisition
- Analytical BRDF model assumptions
- Mesoscale only indicated with normal-mapping
- Very sparse reflectance sampling

OVERVIEW

VAST 2011 – Prato, Italy – Christopher Schwartz

- Acquisition integrated in one setup
 - No error-prone registration
 - No movement during acquisition
 - Suitable for non-rigid objects
 - Automatable

Goal: Digital Replica

- "Digital Replica"
 - Arbitrary viewpoint
 - Arbitrary illumination
 - Arbitrary arrangement (virtual scene)
- High-quality geometry
- **High-quality appearance** (BTF)

The proposed pipeline

ACQUISITION

16 26/10/2011

VAST 2011 – Prato, Italy – Christopher Schwartz

The Capture Setup

- Multi-Camera Dome
 - 151 cameras: Canon PowerShot G9
 - 12 Megapixels
 - Integrated flash
 - Rapid acquisition
 - 8 projectors: Acer C20 Pico
 - At different positions
 - Completely computer controlled

10 20/10/2011

VAST 2011 – Prato, Italy – Christopł

26/10/2011

Appearance Measurement

- Acquire light/view combinations:
- 151 flashes × 151 cams
- HDR: 3 exposures
- 68,403 images
- 2.5 hours
- 453 flash discharges
 ≈ a few seconds under
 100W tungsten lamp

Geometry Measurement

- Acquire structured light sequences:
- 8 projectors × 38 patterns × 151 cams
- HDR: 3 exposures
- 137,712 images
- 1.2 hours

20 26/10/2011

VAST 2011 – Prato, Italy – Christopher Schwartz

Geometric

- From structured light: Weinmann et al. 2011
- Radiometric
 - Cameras: Known response curves
 - Flashes:
 Capture reflectance standards for every discharge

POSTPROCESSING

21 26/10/2011

VAST 2011 – Prato, Italy – Christopher Schwartz

Geometry Reconstruction

- Weinmann et al. 2011: HQ triangle meshes
- ABF++: Parameterization

Appearance Reconstruction

For every point:

Appearance Reconstruction

- For every point:
- Measurement
 - Tabulated (151 × 151)
 - Camera hemispheres
- BTF
 - Tabulated (151 × 151)
 - In local orientation
 - Local hemispheres

Resampling & Hole Filling

- Representative points (random sampling)
- Irregular samples
 & confidence

- Interpolate both
 - Radial Basis Functions

Resampling & Hole Filling

- Perform clustering
- Build low-rank basis per cluster
 - Non-negative Matrix Factorization

Resampling & Hole Filling

- All points
 - RBF interpolation
 - Project into bases
 - Data-driven regularization
 cluster-center
 - Choose representation
 with minimum error
 - Blend with interpolation w.r.t. confidence

RESULTS

Datasets

- Geometry: $\approx 250k 560k$ vertices (500k 1M Δ)
 - Edge length \approx 317 μ m
- Appearance: BTF
 - Spatial resolution 2048 × 2048 (4.2 Megapixel)
 - Texel \approx 117 µm surface resolution
 - Angular resolution 151 × 151
 - Uncompressed: 534.4 GB
 Compressed: 1.59 GB (780 MB,125MB)
 - Resampling: 25 hours
 Compression: 8 hours

Photographic picture

(tonemapped HDR)

Polynomial Texture Map Malzbender et al. 2001 (Single view and LDR!)

Photorealistic Rendering

Interactive Inspection

CONCLUSION

36 26/10/2011

VAST 2011 – Prato, Italy – Christopher Schwartz

Conclusion

- High-quality "Digital Replicas"
 - Free viewpoint
 - Arbitrary illumination
 - Photorealistic
 - Realtime
- Integrated acquisition setup
 - Geometry + appearance
 - Rapid automated acquisition
- Processing pipeline
 - Triangle Mesh + BTF

Technical Contribution

Questions

Thank you for your attention!

Datasets are available for download at <u>http://btf.cs.uni-bonn.de</u> <u>ftp://btf.cs.uni-bonn.de</u>

Acknowledgement:

The research leading to these results was partially funded by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 231809; 2008-2012 and by the German Science Foundation (DFG) under research grant KL 1142/4-1.

