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1 PROOFS
In the following we provide mathematical proof for various state-
ments that are used within the paper.

1.1 Case Distinction for Shading
A convenient aspect of our non-linear representation of the mo-
ments is thaty1 andy2 directly characterize the three different cases
that occur in moment shadowmapping. In the following we assume
y1 < y2 and z1 < z2. Then we claim that the shadow intensity is
zero for zf ∈ (−∞,y1], w1 for zf ∈ (y1,y2) and w1 +w2 = 1 −w0
for zf ∈ (y2,∞). Here is a formalization of this statement.

Proposition 1. For moments b ∈ R5 with b0 = 1 and positive
definite Hankel matrix B(b) lety1,y2 ∈ R be the outputs of Algorithm
2. Let

z1, z2 : R \ {y1,y2} → R

describe the values computed by Algorithm 1 where z1(zf ) < z2(zf )
for all zf ∈ R \ {y1,y2}. Let

N : R \ {y1,y2} → {0, 1, 2}
zf 7→ |{z ∈ {z1(zf ), z2(zf )} | z < zf }|

be a map counting the weights that contribute to the shadow intensity.
Then

N (zf ) =


0 if zf ≤ y1,
1 if y1 < zf ≤ y2,
2 otherwise.

Proof. As a first step, we prove that z1(zf ) and z2(zf ) are well-
defined. According to the correctness proof of Algorithm 1 [Peters
and Klein 2015, Proposition 3], these quantities are ill-defined if
and only if q2 = 0. Thus, we have to prove that q2 = 0 if and only
if zf ∈ {y1,y2}. Let e2 := (0, 0, 1)T denote a canonical basis vector.
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Then by definition of q:
q2 = 0

⇔ (detB(b) · eT2 · B−1 (b)) · b(zf ) = 0

⇔ (b2 − b21) · z
2
f + (b1 · b2 − b3) · zf + b1 · b3 − b22 = 0

This quadratic polynomial agrees with the polynomial in Algorithm
2 which has the roots y1,y2.

The functions z1(zf ) and z2(zf ) are compositions of continuous
functions with no singularities besides y1 and y2. Therefore, they
are continuous on R \ {y1,y2}. Except for their order, they are fully
characterized by the fact that the following matrix is an invertible
diagonal matrix for all zf ∈ R \ {y1,y2} [Peters and Klein 2015,
Proposition 10]:

©­­«
1 1 1
zf z1(zf ) z2(zf )
z2f z21(zf ) z22(zf )

ª®®¬
T

· B−1 (b) ·
©­­«
1 1 1
zf z1(zf ) z2(zf )
z2f z21(zf ) z22(zf )

ª®®¬
It follows that the set {zf , z1(zf ), z2(zf )} always has cardinality
three because otherwise two matrices in this product would not be
invertible. Furthermore, this set does not change if zf is replaced
by any other element of {zf , z1(zf ), z2(zf )} because that only per-
mutes rows and columns of the diagonal matrix in a symmetric
fashion.

Suppose N has a discontinuity at z ∈ R \ {y1,y2}. Then either
the inequality z1(zf ) < zf or z2(zf ) < zf changes at zf = z. Since
both functions are continuous at z this implies either z1(z) = z or
z2(z) = z. Contradiction.

Finally, we note that aminimal choice of z0 in {zf , z1(zf ), z2(zf )}
has to lead to N (z0) = 0, while the largest choice leads to N (z0) = 2
and the choice in between leads to N (z0) = 1. Considering that N
is continuous on R \ {y1,y2}, this completes our proof. �

1.2 Bounds on y1, y2
Our quantization scheme exploits y1,y2 ∈ [−1, 1]. The proof of this
statement is a simple consequence of Proposition 1.

Proposition 2. Let Z be a distribution on [−1, 1], let b = EZ (b)
and assume that b2 −b21 > 0. Let y1,y2 be the outputs of Algorithm 2
with y1 < y2. Then y1,y2 ∈ [−1, 1].

Proof. Suppose y1 < −1. Consider zf ∈ R with y1 < zf < −1
and zf < y2. By Proposition 1, the shadow intensity for zf is given
by

w1 =
1

(1, z1, z21) · B−1 (b) · (1, z1, z
2
1)
T
> 0.

Obviously, this cannot be a lower bound to Z (z < zf ) = 0. Contra-
diction.

Proving y2 ≤ 1 works analogously by considering zf ∈ R with
1 < zf < y2 and y1 < zf and optimal upper bounds. �
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1.3 Bounds on ξ4
Another inequality used by our quantization scheme is ξ4 ≤ 0.25.

Proposition 3. Let Z be a distribution on [−1, 1], let b = EZ (b)
and assume that b2 − b21 > 0. Let ξ4 be the output of Algorithm 2.
Then ξ4 ≤ 0.25 and this bound is sharp.

Proof. For z ∈ [−1, 1] we know z4 ≤ z2 and thus

b4 = EZ (z4) ≤ EZ (z2) = b2.

Now we consider the definition of ξ4 from Algorithm 2:

ξ4 = b4 − b22 −
(b3 − b1 · b2)2

b2 − b21
≤ b4 − b22 ≤ b2 − b22

Basic analysis shows that b2 − b22 takes its global maximum at
b2 = 0.5. Thus,

ξ4 ≤ b2 − b22 ≤ 0.5 − 0.52 = 0.25.

To show that this upper bound is sharp, we consider the case

Z = 0.25 · δ−1 + 0.5 · δ0 + 0.25 · δ1.

Then
b = (1, 0, 0.5, 0, 0.5)

and therefore

ξ4 = b4 − b22 − 0 = 0.5 − 0.52 = 0.25.

�

1.4 Scaling of ξ4
For shading with a minimal number of operations we shift and
scale the domain of depth values to achieve y1 = 0 and y2 = 1. This
transform necessitates a change of ξ4 that we derive below.

Proposition 4. Let Z be a depth distribution on R, let b = EZ (b)
and assume b2 − b21 > 0. Let y1,y2,v2, ξ4 ∈ R be the outputs of
Algorithm 2 for input b. Let

c := 1
y2 − y1

, d := −c · y1

be the scaling and shifting needed to normalize the depth values. For
j ∈ {0, 1, 2, 3, 4} let

b ′j := EZ ((c · z + d)j )

denote the moments of the scaled and shifted depth distribution. Let
ξ ′4 be the output of Algorithm 2 for input b ′. Then

ξ ′4 = c
4 · ξ4.

Proof. Let S := (1 − v2) · δy1 + v2 · δy2 be the sparse distri-
bution that reproduces the moments b1,b2,b3 [Peters et al. 2017,
Proposition 1]. Then by definition

ξ4 = EZ (z4) − ES (z4).

Scaling and shifting just applies a linear transform to the mo-
ments [Peters et al. 2017, Equation (2)]. Thus, scaling and shifting
both Z and S leads to a new pair of depth distributions where the

first three moments agree. Since nothing changes about the sparsity
of S , we obtain

ξ ′4 = EZ ((c · z + d)4) − ES ((c · z + d)4)

= EZ
©­«

4∑
j=0

(
4
j

)
· c j · zj · d4−jª®¬ − ES

©­«
4∑
j=0

(
4
j

)
· c j · zj · d4−jª®¬

=

4∑
j=0

(
4
j

)
· c j · (EZ (zj ) − ES (zj )) · d4−j .

In this sum, the terms for j ∈ {0, 1, 2, 3} vanish because the corre-
sponding moments of S and Z agree. What remains is

ξ ′4 =

(
4
4

)
· c4 · (EZ (z4) − ES (z4)) · d0 = c4 · ξ4.

�
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