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ABSTRACT

Diffusion magnetic resonance imaging is negatively affected
by subject motion occurring during the image acquisition.
The induced data artifacts adversely influence the estimation
of microstructural diffusion measures. State-of-the-art pro-
cedures for outlier removal detect and reject defective im-
ages during model fitting. These methods, however, are tai-
lored only for specific diffusion models and excluding a vary-
ing number of diffusion-weighted images might be disadvan-
tageous for the parameter estimation. Therefore, this work
proposes a novel method based on an iteratively reweighted
L1-Fitting for model-independent outlier removal with subse-
quent reconstruction of faulty images by modeling the signal
in the continuous SHORE basis. We validate the proposed
method on simulation data and clinical in vivo human brain
scans and demonstrate its effect on diffusion parameters de-
termined by the kurtosis and NODDI model.

Index Terms— Diffusion MRI, SHORE Basis, Sparsity,
Robust Estimation, Outlier Correction, Clinical Applications

1. INTRODUCTION

Diffusion magnetic resonance imaging (dMRI) provides the
possibility to investigate the structural connectivity of brain
white matter non-invasively and to examine pathological con-
ditions of the central nervous system. However, the technique
is sensitive to artifacts occurring during the image acquisi-
tion. Spatially and temporally varying artifacts, e.g. induced
by subject motion, potentially degrade the signal quality and
complicate subsequent analysis of the complex white matter
architecture. Especially in clinical applications, when data is
collected from diseased patients, children in particular, mea-
sures need to be taken against the image degradation due to
frequently occurring motion artifacts.

Robust estimation procedures have been introduced to
reduce the influence of defective images on diffusion model
parameters. Widely used in clinical applications is the RE-
STORE method [1] that improves the estimation of the model
parameters in diffusion tensor imaging (DTI) through outlier
rejection based on iteratively reweighted least squares (IRLS)

regression. Consequently, microstructural features are more
accurately extracted from the DT model. To this end, the
RANSAC paradigm has also been investigated for robust
tensor estimation and artifact detection in diffusion-weighted
images [2]. Extending DTI to the popular diffusion kurtosis
imaging (DKI) model [3] complements the information de-
rived from the diffusion tensor and provides further insights
on the non-Gaussianity of water diffusion in brain tissue.
Recent literature shows that the dedicated outlier removal
method REKINDLE [4] limits the impact of faulty DKI scans
on the estimation of diffusion parameters. However, the
robust estimation methods proposed in the literature so far
are mainly tailored for specific diffusion models as well as
limited to models than can be linearized.

The present work explores a novel approach to reduce the
influence of artifacts on diffusion-weighted images (DWIs)
and to provide a robust estimation of the dMRI measurements
independently of the diffusion model that, specific for each
application, is used to extract structural measures from the
data. We use the Simple Harmonic Oscillator based Recon-
struction and Estimation (SHORE) basis to capture both the
angular and the radial characteristics of the diffusion pro-
cess [5]. Modeling the signal in the SHORE basis not only
provides a continuous signal representation but also analyt-
ical formulae for the diffusion ensemble average propagator
and commonly derived diffusion parameters [6]. Promoting
the sparsity of the SHORE basis coefficients by means of
an L1-norm regularizer has been found to outperform linear
least squares estimation of the diffusion signal modeled in
the SHORE basis [6]. Nevertheless, the SHORE basis is not
immune from artifacts challenging the inference of structural
parameters. Therefore, we propose a novel robust estimation
procedure, IRL1 SHORE, that iteratively reweights the dif-
fusion signal to detect and reject erroneous signals based on
the model residuals. State-of-the-art methods for outlier re-
moval proceed similarly and discard faulty DWIs from the
data before extracting the diffusion measures of interest. Re-
cent literature, however, indicates that excluding DWIs due to
outlier removal might negatively affect the extracted diffusion
parameters [7, 8]. To account for this potential problem, the



proposed method recovers excluded DWIs by means of sparse
signal reconstruction in the SHORE basis and subsequent im-
age analysis is performed on the full data set. To evaluate the
proposed method we use simulations and in vivo dMRI data.
We demonstrate the advantages of IRL1 SHORE to correct
for motion artifacts and to improve diffusion parameter esti-
mation independently of the required diffusion model.

2. MATERIALS AND METHODS

2.1. SHORE - an analytical model for sparse signal
reconstruction

For a continuous representation, the signal is expressed as a
linear combination of basis Φ that separates a radial basis X
and an angular basis Y with the radial order n and, respec-
tively, the angular order and degree l and m

s(qu) =

Nmax∑
l=0,even

(Nmax+l)/2∑
n=l

l∑
m=−l

cnlmΦnlm(qu)

with Φnlm(qu) = Xnl(q, ζ)Y m
l (u)

(1)

where q is the norm of the diffusion gradient vector q, u a
unit vector and cnlm are the SHORE coefficients. A real and
symmetric spherical harmonic (SH) basis Y m

l is considered,
as the diffusion signal is real and symmetric. ζ is a scale factor
based on a typical diffusivity for brain tissue.

When combining analytical signal modeling with com-
pressed sensing principles to recover the signal of sparse mea-
surements, the SHORE basis is well suited and outperforms
other continuous basis functions [6]. For sparse signal re-
construction, we use an iterative shrinkage and thresholding
algorithm [9] to solve the convex optimization problem

arg min
c∈Rnc

‖Φc− s‖l2 + λ ‖c‖l1 (2)

where the signal vector s with entries s(qu) is obtained
from all the measurements through normalization by the non-
diffusion weighted signal S(0). The terms ‖Φc− s‖l2 and
‖c‖l1 promote data consistency and sparsity, respectively.

2.2. Outlier detection by iteratively reweighted L1 SHORE

Similar to state-of-the-art approaches for robust signal esti-
mation, the proposed method contains an iterative reweight-
ing of the model residuals. Specifically, we adapt equation
(2) to include an iterative reweighting of the SHORE residu-
als during the L1-norm fitting routine for each voxel

arg min
c∈Rnc

‖Ω(Φc− s)‖l2 + λ ‖c‖l1 (3)

where Ω is the diagonal weight matrix containing the
weights

√
wi for each normalized measurement si. We use

the Geman-McClure M-estimator and the weight function
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Fig. 1. Simulations with SNR=20 and varying % of outliers:
(top) sensitivity and specificity of IRL1 SHORE and REKIN-
DLE as functions of threshold t and k, respectively; (bottom)
NMSE versus % of outliers for noisy data and the correction
methods using L1- or L2-norm regularizers and correcting all
(IRL1/2 all) or only corrupted (IRL1/2 outlier) DWIs.

w(r̂i) = 1
(r̂2i+1)2

that have been found suitable as a robust
estimator for dMRI [1, 4]. When assessing the residual mag-
nitudes, it needs to be considered that the elements of s have
been normalized by the signal magnitude at b = 0, which
itself is a random variable estimated as part of the iterative
fit, i.e. the estimate ŝ(0). Approximating the raw signals to
be Gaussian distributed with standard deviation σ, this can be
corrected by normalizing the residuals according to [10]

r̂i = (ŝ(0)si − ŝi)/(σn
√
s2i + 1) (4)

where ŝ are the SHORE estimates of the normalized sig-
nals and σn is the standard deviation normalized, as the mea-
surements, by S(0). In each iteration, the weights are updated
from the previous residuals and a new estimate of the SHORE
coefficients is determined. If convergence or the maximum
number of iterations has been reached, signals are accepted if
|r̂i| <= t. The threshold t is a critical parameter that balances
sensitivity and specificity of detecting faulty data points. Sig-
nals with |r̂i| > t are detected as outliers and discarded from
the data set. Next, L1 SHORE is applied to the retained DWIs
and rejected measurements are reconstructed.

2.3. Simulations and experiments

Synthetic data is generated using the Camino Monte-Carlo
simulator [11] to validate the proposed method. For 600
instances of a 55◦ crossing microstructure of well-defined,
but random orientation, we simulate diffusion signals for
two b = 0 scans and for two shells in q-Space with 30 and
64 uniformly distributed diffusion-weighting directions with



b-values 700 and 2000 s/mm2, respectively. We reduce the
signal intensities by 70% to simulate signal dropouts due
to subject motion in a well-defined amount of data. Rician
noise is added with SNR of 20 defined on the non-diffusion
weighted image, i.e. SNRDWI < 20. We calculate sensitivity
and specificity of the outlier detection and the normalized
mean square error (NMSE) between the signal reconstructed
with IRL1 SHORE and the ground truth simulation data.

Furthermore, we investigate the impact of IRL1 SHORE
on in vivo clinical dMRI scans that are affected by strong mo-
tion artifacts because they were acquired from children suf-
fering from metachromatic leukodystrophy, a rare neurode-
generative disease. Parents gave informed written consent
for the scientific use of the data. The images were collected
on a 3.0T SIEMENS MAGNETOM Skyra scanner using a
twice-refocused echo planar imaging sequence. The imag-
ing protocol has the same parameters as used for simulations
with a spatial resolution of 2x2x2mm3, TR/TE = 9100/89
and FOV = 96x96mm2 for 50 contiguous slices. To vali-
date the performance of IRL1 SHORE, we extract common
diffusion features such as fractional anisotropy (FA), kurtosis
anisotropy (KA) and mean and radial kurtosis (MK, RK) us-
ing ExploreDTI [12]. This toolbox also enables the compari-
son of our method with the REKINDLE approach for outlier
removal [4]. We apply REKINDLE with the default settings
for outlier removal and a constraint that promotes positive di-
agonal elements of the kurtosis tensor. In addition, a measure
for the fiber density is obtained from the NODDI model [13].

3. RESULTS AND DISCUSSION

3.1. Simulations

We investigate the performance of the proposed method us-
ing simulated data corrupted by artificial signal dropouts. In
IRL1 SHORE, a critical parameter is the threshold, t, that
separates outliers from good data. REKINDLE applies the
corresponding threshold parameter k. We compute the sen-
sitivity and specificity of both methods based on the applied
threshold and the number of outliers in the data (Fig. 1, top
row). For the proposed method, a threshold of t = 2.0 is
found to provide a good balance of these two properties inde-
pendently of the amount of outliers in the data. In contrast, the
optimal threshold value for REKINDLE varies with the out-
lier percentage. IRL1 SHORE, further, provides superior out-
lier detection for increased percentage of outliers. Applying
t = 2.0 and varying the amount of artificial outliers, we de-
termine the NMSE between noise-free simulations and noisy
simulations with and without outlier correction. REKINDLE
is not considered because it only detects faulty signals but
does not recover discarded DWIs. We also compare SHORE
using L2-norm and L1-norm regularization as well as two dif-
ferent strategies for correcting the DWIs: correcting (1) only
voxels detected as outliers or (2) all measurements. The re-

Fig. 2. DWIs with outliers (top) that are detected (middle) and
corrected (bottom) by IRL1 SHORE (b = 0, 700, 2000s/mm2)

sults shown in figure 1 (bottom row) indicate that the SHORE
basis already regularizes the dMRI signal, which is known
to be SNR sensitive, especially at high b-values. The detec-
tion of outliers by iteratively reweighting the model residuals
and the subsequent recovery of corrupted data further reduce
the NMSE. The L1-norm regularizer leads to more accurate
SHORE signal estimation and therefore lower NMSE than L2
SHORE, a finding confirming recent literature [6]. Modeling
all DWIs rather than only the voxels detected as outliers, fur-
ther improves the signal estimation and reduces the NMSE.

3.2. In vivo clinical data

In human in vivo images tainted by motion artifacts, we show
the advantages of IRL1 SHORE. Figure 2 highlights that the
proposed method succeeds in locating faulty signals and sub-
stantially corrects the DWIs. In contrast to state-of-the-art
methods for outlier removal that discard corrupted images,
IRL1 SHORE corrects and recovers all DWIs before diffu-
sion parameter estimation. Due to this, the proposed method
is potentially less susceptible to errors that might occur if
diffusion measures are calculated from a reduced number of
DWIs [7, 8]. As for simulations, we compare the two dif-
ferent strategies for correcting DWIs. Visually, no significant
difference is noticeable. However, future work will investi-
gate these strategies more thoroughly and quantitatively, also
with respect to their influence on diffusion parameters. Figure
3 shows that IRL1 SHORE reduces the influence of artifacts
in the DWIs on diffusion parameters extracted by means of
different diffusion models. Compared to the DWIs (Fig. 2),
the improvement is less pronounced. Nevertheless, the white
matter structure is much better defined using IRL1 SHORE,
especially in the color-encoded FA map. For DT and kurto-
sis measures, we also compare IRL1 SHORE to the REKIN-
DLE method for outlier removal. On our challenging clini-
cal data, REKINDLE appears to reduce, rather than increase
the quality of kurtosis fits. Given the relatively low num-
ber of acquired DWIs, it appears that simply discarding out-
liers leaves a set of measurements that is insufficient to reli-



Fig. 3. Color-encoded FA, KA, RK, MK and FICVF maps determined for the measured DWIs (top) and for the proposed IRL1
SHORE (middle) and the competing REKINDLE method (bottom).

ably fit the kurtosis model using the iteratively weighted LLS
(IWLLS) approach used by REKINDLE. In contrast, our pro-
posed method uses a sparsifying basis and an L1-regularized
fit. This makes it particularly suited to restore and denoise the
full set of DWIs from the sparse set of inliers. Standard meth-
ods can then be used for the final model fit. Finally, figure 3
depicts that IRL1 SHORE corrects for artifacts in the param-
eter map of the intra-cellular volume fraction, FICVF, a mea-
sure for the fiber density obtained from the NODDI model.
Our results demonstrate that, in contrast to state-of-the-art
methods for outlier removal, IRL1 SHORE improves diffu-
sion features independently of the required diffusion model.

4. CONCLUSION

In this work, we propose a new method for model-independent
outlier removal and robust sparse signal reconstruction that
corrects dMRI data for motion artifacts, reduces the impact
of defective DWIs on diffusion measures and thus improves
the quality of parameter maps. Future work will apply this
method to more imaging data and other diffusion models.
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