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Simple, Robust, Constant-Time Bounds on Surface Geodesic
Distances using Point Landmarks

Oliver Burghard and Reinhard Klein

Bonn University
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Figure 1: The lower bound gi, is a good distance approximation (a), such as the upper boung ah the backside (b; 30
landmarks). The quality ofigl, on the Stanford Dragon (c) can be seen in its low relative error (d; 100 landmarks).

Abstract

In this paper we exploit redundant information in geodesic distance elds for a quick approximation of all-pair
distances. Starting with geodesic distance elds of equally distributed landmarks we analyze the lower and upper
bound resulting from the triangle inequality and show that both bounds converge reasonably fast to the original
distance eld. The lower bound has itself a bounded relative error, ful lls the triangle equation and under mild
conditions is a distance metric. While the absolute error of both bounds is smaller than the maximal landmark
distances, the upper bound often exhibits smaller error close to the cut locus. Both the lower and upper bound
are simple to implement and quickly to evaluate with a constant-time effort for point-to-point distances, which are
often required by various algorithms.

Categories and Subject Descriptofsccording to ACM CCS) 1.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction The lower bound has itself a bounded relative error, so that
it can be used as an approximation for geodesic distances.
The upper bound often exhibits smaller absolute errors close
to the cut locus, which makes them better suited for certain
class of applications. And because the difference of lower
and upper bound is limited by the maximal distance of land-
mark points, so is the absolute approximation error by both
To motivate our approximation notice that distance elds bounds.
at different points typically share a lot of common infor-
mation (see XYH12] for a discussion and our later analy- Under the mild condition that no point has equal dis-
sis). The triangle inequality estimates lower and upper dis- tances to all landmarks (which should not happen for more
tance bounds between two points based on distances to athan 3 landmarks) the lower bound is a distance metric
third point. Starting with a reasonable set of landmark points (dmin(p; p) = O, triangle equation andé q) dmin(p;q) >
we derive a lower and upper bound on all-pair geodesic dis- 0). As some ef cient methods for calculating geodesic do
tances. We analyze these bounds and show that they are acnot assure the triangle equation (e @WWW13), our lower
curate, simple to implement and ef cient to compute. bound might be used as an approximation instead.

Geodesic distances on surfaces are an important tool pro-
viding intrinsic information derived from the metric. Even
though there has been much research in approximating
geodesic distances their calculation can take a signi cant
time in current processing.
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Our distance elds are ef cient to compute in the sense projecting quadrilaterals into the euclidean plane, as side
that there is a constant effort required for calculating bounds lengths and one diagonal are known.
on the distance of two points. Often algorithms depend on
pairwise distances only instead of global distance elds (e.g.

Karcher means or Voronoi regions). Such algorithms will be imations to the exact distances. Yet their a_lpproxim_ations
typically much faster with our approach, than with global might be lead to less smooth, even non-continuous distance

. Ids as they depend on the induced coarse triangulation
distance elds (seeQWW13 XWL 15]). €
(seeq 3 £ (which changes non-continuously). They have no bounds
on the approximation error and their approximated distance
might not be a distance metric. See Séfor a comparison.

Their method is similar to ours and delivers good approx-

2. Related work
The paper is structured as follow: First we introduce our
lower and upper bounds on geodesic distances. Then we
analysis their properties and error bounds. Finally we show

qualitative and quantitative evaluations.

Calculating geodesic distance elds there are two different
classes of algorithms, exact and approximate ones. Exact
algorithms MMP87, CH90, XW09, XWL 15] often utilize

that single-source distances (on a piece-wise linear mesh)
equal to a set of quadratic functions on an edge (called win-
dows). Similar to Dijkstra on graphs, they distribute win-
dows between triangles over adjacent edges. Best algorithms
have a complexity oB(n?) [CH9QXWL 15|, which is min- To motivate our method notice that on a surface all-pair
imal [XWL 18] and thus their complexity is optimal. geodesic distances share much redundant information. For
example, each distance eld fromamounts to the informa-

tion of all shortest paths starting j Therefore with all-pair
distances all geodesics, which shortest paths are subsets of,
can be reconstructed and vice-versa.

3. Landmark induced distance bounds

Exact distances are often not critical for applications as
long as errors are small. Indeed frequently used piece-wise
linear surfaces often are an approximation of a continuous
surfaces themselves. Geodesic distances solve the Eikonal
PDE:kr dp(x)k = 1, so that KS9§ approximate geodesics A distance eld is typically required or desired to adhere
as solutions to this equation. Their approach hast a complex- to the triangle inequality, that is the shortest path froto g
ity of O(nlogn)). Predicting the geodesic gradient from heat  must get longer if we additionally require that it passes some
diffusion [CWW13 speeds up approximation further. Ignor-  other pointr:
ing a one-time matrix factorization, it reduces the complex-
ity to O(n) per distance eld, which is trivially optimal for d(p;g) d(p;r)+ d(r;q) ()

an entire distance eld. Subtraction ofd(p;r) and changingy andr gives a refor-

Yet this complexity is not optimal when approximating a  mulation with alower andupperbound on distance(p; q)
point to point distances. Typically applications require only induced by a distance eld from some landmark paint
few distances and not the whole distance eld, e.g. cal- — N ) ) .
culating Karcher meang<gr77], intrinsic Voronoi regions jd(pir) - d(r)j  d(p:g) d(pn)+dna)  (2)
[XW10] or non-rigid registration HAWGO08]. After prepro- o ) ]
cessing a constant time approximation, i.e. not depending on  Unifying bounds induced by a set of landmark poiRts

optimal. De nition 1 The minimal and maximal induced distances of

A different set of algorithms has this constant complexity the landmark® over the distance metrit: M M Ry
for point to point distances. They de ne intrinsic distances are:
by embedding a manifold into some euclidean space and

back-projecting the distance metricF10, CL06, QHO7. Arin(p: @) := rrgaRXJd(r; P (o) ®)
This construction guarantees a distance metric with constant dmad(p; ) := min d(r; p)+ d(r; ) )

time point to point distances. Still no embedding has been

found so that distances are assured to approximate geodesicrpe actual landmark that gave rise to a maximum of
distances (indeed exact preservation of geodesic distance isqy_. (p:q) or a minimum ofdmax(p; g) is called thenducing
often impossible). landmark. We add an upperindex to denote the distance
w.r.t. a single landmark and will use this also on upcoming

[XYH12] proposed a method for constant time geodesic € . r
de nitions: dp,in, Omax:

distance approximation with a similar motivation such as our
method. From equally spaced landmarks they construct a g, completeness we quickly recapitulate properties
coarse intrinsic Delaunay triangulation on the surface with g ning a distance metric:

precomputed pair-wise distances on the landmarks. Mesh

distances are then interpolated utilizing this triangulation by De nition 2 A pseudo distance metric is a map M

The de nite version is available dittp://diglib.eg.org/
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pos sym ident strictpos tri.ineq.
Amin X X X mostly X
Omax | X X X (mostly)

Figure 2: Properties emerging from the de nitions of,@
and dnax (see Theorem). Properties in brackets are valid
for landmark distances that do not emerge from a proper
distance metric (see Set.1).

M 7! Rwith (8p;g;r2M )
d(p;g) 0O (pos)  (5)
d(p;a) = d(a; p) (sym)  (6)
d(p;p)= 0 (id) ()
d(p;g) d(p;r)+ d(r;q) (tri.ineq.)  (8)
A distance metric is a pseudo metric wiBp{q2 M )
d(p;g) > 0if p6 q (strict pos) 9

As the next Theorem and TaB. showsdmin and dmax
share several desirable properties:

Theorem 1 dmin(p; ) is a pseudo distance metric and a
proper distance metric iff there are no points with equal dis-
tances tall landmarksdmaxis symmetric and strictly posi-
tive. (Please nd all proofs in the appendix)

After de ning the absolute approximation error as

emin(P; @) == d(p;d)  dmin(p;d) > O (10)
emax(P; d) := dmax(p;d) d(p;q) > O (11)

there are the following relations:
Amin(r; ) = dmax(r; ) = d(r; ) 12)
emax(P; A) + emin(P; ) rZR;Inglfnp;qu(z; r (13)
emin(P;6)  emin(p%0) + 2d(p; p) (14)
ema(P;0)  emadp’0)+ 2d(p; p) (15)

On the landmark points the approximation is exact (E2).
Otherwise it is bounded by the maximal inter landmark dis-
tance (Eq.13), which assures that adding landmarks de-

Vinax (D)

c)

Figure 3: Top: lllustration of a few maximal shortest paths
induced from a single landmark point. Bottom: (a) The eu-
clidean line is split up by a single landmark between two
regions - one wherel, is exact and one wheredx is ex-

act. b) On the circle there due to topology in uence there is a
third region where none is exact. c) The geodesanspd by

r and p shown with same regions,{\, Vimax). Likain b due

to topology there are regions on the geodesic where neither
is exact.

Now for estimating the error one has to determine the
setVmin(p) andVmax(p), i-e. all g wheredmin or dmax are
exact. Becaus@nmin(p;q) = minr2 remin(P; @) and analog
emax= MiN;2 REMmax(P; o) determiningVinin(P) andVinax p)
is suf cient (remember that upper indices are restrictions to
single landmarks).

We assume that we have a smooth surface and for sim-
plicity assume that there is a single shortest path between
two points. For geodesic distances and some landmaihle
induced distancd],, is exact iffq is located on the shortest
path ofpandr, or pis located on the shortest pathepéndr.
dmax is exact iffr is located on the shortest path connecting

p andq.

creases the absolute errors. For example placing landmarks

onatorusina reg%agidl grid points will lead to a land-
mark distance irO(" 1=n). Thus for twice the precision 4
times the landmarks are needed.

Eq. 14 and Eq.15 allow limiting the error with dis-

tances to well approximated sets, which leads to much better

convergence. LeVmin(p) := fgjdmin(p;a) = d(p;g)g and

Vmax(q) = fqjdmaxp;q) = d(p;0)g be the sets of points
wheredmi, respectivedmax are exact. Then the distance of
eitherp or g bounds the absolute error:

2d(0; Vimin(P))
2d(q; Vimax(p))

(16)
17

emin(P; d)
emax( p; 0)

The de nite version is available dttp://diglib.eg.org/

Shortest paths starting in either intersect only inm or
one is the subset of the other. This partial ordering gives rise
to maximal shortest paths. A few of those maximal shortest
paths are visualized in Fi@. Let R* denote the maximal
shortest path starting inincluding p, R be the opposite
maximal shortest path located on the same geodesic. Similar
let P be the union of maximal shortest path containirend
its opposite. Then:

r
Vmin
r

[
Vma(P) = Vinax

r

+ + [
Vmin(p)= R"\ P=R Vimin(p) = (18)

Vmadp)= R \ P (19)
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Figure 4: Visualization of Win(p). For a single point p we
collect the maximal induced shortest paths from all land-
mark points (exactly one curve for each landmark). The er-
ror emin(P; g) is bound by twice the distance of q to any of
these curves. The curves gfifl have smaller lengths than
the maximal shortest paths starting in p, what we described
as the topological error (ends are marked with small ar-
rows).

In Fig. 3 we see 3 different domains and xeglandr.
In the rst example the euclidean line is partitioned Wyin
andVmax into two segments and for every point on the line,
either dmin or dmax is exact. Any subset of a geodesic (the
euclidean line) is a shortest path. Top right we see a closed
circle demonstrating the topological in uence in comparison
with the line. There is a region where neithtlfi, Nor dmax
is exact. Finally bottom left we see a geodesic on a smooth
surface showing topological and tangential error.

An illustration of Vinin can be seen in Figd. Equally

spread landmarks create curves quickly becoming dense ev-

erywhere. Errors get smaller, the clogeandq, which in
our tests resulted in a bounded relative errodgf, as well.
This dense eld of lines leads to a decrease of absolute er-
rors of dmin and dmax as well as the relative error afnin

(emin(p; @)=d(p: Q)).

Approximation errors can be classied into two cate-
gories. For a good approximation one needs a landmark
inducing maximal shortest patlsso thatP is close tog.

We call this rst class of errors tangential errors. Addition-
ally r must be located oR in such a way that errors dhcan

be inferred and this second class of errors we call topological
errors, as it does not appear in euclidean domains. Moving a
landmarkr alongP will change the topological error, mov-
ing r so thatP changes, changes the tangential error.

3.1. Arbitrary landmark distance elds

The input of thedmin and dmax is strictly speaking not a
distance metric, but consists gRj different distance elds
(d(r; ) := dr()). For the given input, there might not exist
a distance metric reconstructing input distances. This might
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rst place. In the following we reason about effects on the
bounds.

There are various reasons why arbitrary distance elds
might not be compatible with any distance metric: Distances
might not be symmetricc%(ro) 6 dio(r)), triangle equation
might not hold between two distance elds, distances might
not be 0 at the landmarksl(r) 6 0), distance might be 0
elsewhered:(p) = 0;p 6 r) or distance might be negative
(dr(p) < 0). Interestinglydmin will still be a (pseudo) dis-
tance metric:

Theorem 2Given arbitrary distance elddr : M! R with
dr(r) = 08r 2 Ras input and de n@min anddmaxas:

drin(PiC) = maxick(p) (@] (20)
drad i) = minjoh (P + jck(@]  (2D)

Then most results of Theordnstay valid: dmin(p; Q) is a
pseudo distance metric and a proper distance metric iff there
are no points with equal distancesath landmarksdmax is
symmetric and positive.

On landmark points there is:

dmax(r; )  dr()  dmin(r; )

and for two pointsp;q 2 M the inequalitydmax(p;q) <
dmin(p; @) holds if and only if there exists two landmarks
r1,r> where the triangle inequality can not be ful lled for
p; q;r1;r2 (not necessarily pairwise different).

(22)

The reason why the exactnesdgf, depends only on the
triangle equation is simply that violations of identity, posi-
tivity and symmetry lead to triangle equation violations.

Let dmin[dr] anddmax{dr] denote the distance elds emerg-
ing from the distancesl at the xed landmarks. Then
dmin[dmin[dr]] equalsdmin[dr], becauselmin[dr] is a distance
metric, that will be exactly reproduced (Etf). This is gen-
erally not true fordma{dmaxdr]] = dmax{dr].

As a simple example we inspect a triangle with edge
lengths 12;4, that violates the triangle inequality. All three
vertices should be landmark points. Theyf, anddmax are
2;3;4 and 12; 3 respectively. As guaranteéd,, adheres to
the triangle inequality, but in this simple case alsen$d
Because the triangle equation was initially violated for all
edges we havémax dmin everywhere.

There could be 'better' distance metric approximations.
For example, we could de ne the optimal least squares ap-
proximation with a least squares energy

z

. o
argmiry is a distance metric
r2R

(d(r;X)  dr(x)%dx

be due to numerical errors or might be because the input which de nes a quadratic progrardqmin is not optimal, but
distances were not derived from a distance metric in the for our example above%l' 21;3% would be.

The de nite version is available dttp://diglib.eg.org/
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Figure 5: enin and enax on different domains with up to 4
landmarks (black dots). Top rows depict an unbounded eu-
clidean space and the bottom rows a bounded torus (i.e.
warping around left-to-right and top-to-bottom). Please see
the text for further discusggn. [Coordinates3 to 3, land-
marks on a circle of radius 2, colors from O (light blue) to

3 (light brown) with 6 equal spaces contour lines].

4. Evaluation

To get a rst qualitative idea of the bounds, Figcontains
plots ofdmin anddmaxin an euclidean plane (top) and on the
torus (bottom). There are up to 4 landmarks (black points)
and we infer bounds for the distances from the origito

dmin

__

front

Omax
e /

e S B

Figure 6: Regions colored based on the landmark induc-
ing distances to p. Regions should resemble Voronoi regions
around lines of Min(p) and Mnax(p).

with [CWW13 so that fork landmarks and points the run-
time is O(kn), excluding the once required matrix factor-
ization (tests with exact geodesidd{IP87] led to similar
results).

After having landmark points spread we can evala@tg
and dmax on actual meshes. Fi§.shows a cat, where two
points share the same color if distances to a xedre in-
duced by the same landmark. The exactnesd.af(p; q)
depends on the minimal distance frapto one of the sets
Viin(P). Thus we expect regions of same colors to resem-
ble Voronoi regions oW,(p). Same is true fodmax and

the plane. First observation is that errors are indeed bound Vi, p). In agreement with our previous writing they change

by t[gviEe the distance from the origin to the closest landmark
(2 ° 2in our case) which follows from Ed.3. The error is
bound for each point by twice its distance to the closest po-
sition without error ¥Ymin(0) andVmax0)). In the euclidean
plane the distances t4yin(0) and enin decrease quickly,
which is not true fordmax. The torus additionally exhibits
topological error, which leads to worse lower boumtig,,

but affectsdmaxless.

One interesting insight from the Euclidean case is that
relative errors ofdmin, i.e. emin=d are bound (if there is at
least one landmark). Letr be the minimal angle between
the shortest path fromto g and some path ¥ii,(p). Then

emin(p; 9)=d(p; g)

The same is true on a smooth manifold for some small neigh-
borhood aroundp. But then the relative error is also glob-
ally bound. In our experiments the largest relative errors ap-
peared locally, so that the ner the directions of the tangent
space are sampled by shortest paths(p), the smaller is
the maximal relative error afmin (see Figdd and Fig.10).

1 cosar

For evaluation on real world data we need to decide on
landmark points. In our tests we chose farthest point sam-
pling, which worked quite well. We choose a random point
rst and then iteratively add the point with maximal distance
to all previously chosen. Distance calculations were done

The de nite version is available dtttp://diglib.eg.org/

frequently fordmin, less so fodmax.

A quantitative analysis of the bounds, their distances and
absolute and relative errors were done on 3 different mod-
els in Fig.7. First 1000 landmark points and their distances
were calculated with furthest point sampling. Then the last
100 were chosen as test points, on whose distance elds the
bounds were compared to the exact distances. The graph
for example contains the mean value egfi, as measured
from the test points to all others. The graph is twice loga-
rithmic, so that exponential functions become straight lines
whose slope is the exanLm. Two guide lines were added
showing the function®© (" 1-=n) andO(1=n) to which the
other plots can be set in relation. In agreement to our the-
oretical considerations, absolute err@sn and emax and
the relative erroemin=d are decreasing similar 10 (1=n),
while the distanc%the closest landmark point decreases
only with orderO(" 1=n), which is thus not the reason for
good convergence. The bounds can be further visually in-
spected in Figure8, 9 and10.

From the related work the work of Xin et alXfH12]
is most signi cant, as they approximate geodesic distances
in constant time as well. For a fair comparison we chose
for their algorithm the same landmark points as for our ap-
proach, from which they then build a coarse triangulation to
infer distances. They deliver a good approximation, w.r.t. the
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Figure 7: Absolute and relative errors in a logarithmic plot over the number of points. In agreement with oug model errors
decrease approximative wit@(1=n) irb contrast the distance to the closest landmark decreases only with @rflerl=n).

Straight lines represer® (1=n) andO( 1=n) for reference.
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absolute approximation error. Yet through the in uence of
the triangulation, their approximation is not continuous. Fur-
ther their approximation might not result in a distance met-
ric. For large Gaussian curvatures the real distances might
deviate largely for their approximation, while our method
always gives assured bounds. Finally, the implementation of
our algorithm is of a remarkable simplicity.

M

5. Future work 100 landmarks

i o Figure 11: Comparison to KYH13. They calculate con-
It could bg well worth, investigating |_deas _for better land- stant time all-pairs distances as well. We utilize the same
mark placmg. we p_resent the_z following simple Theore_m, sample points as in our results (furthest point sampling).
that m'ght help relating potential landmarks to the resulting Note the discontinuities and see the text for discussions.
approximation error.

Theorem 3Let p;g;s2 M , furtherd(p;s) d(p;q) and
d(g;s) d(p;g) andhs be the shortest distance ®fo any

The de nite version is available dttp://diglib.eg.org/
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min/30 min/100 exact max/100 max/30

Figure 9: Visualization of boundaries on the Happy Buddha.

exact distances (colorscale 0-160) emin=d (colorscale 0%-35%)

emax (colorscale 0-26) emax=d (colorscale 0%-35%; unbounded)

Figure 10: Visualization of the errors for the Stanford dragon.

shortest path connectingandq. Then 6. Appendix

eg“n( p;s) = eﬁ“n(s q) = enadp;d hs (23) Theorem1 Fo_r_dmin po_sitivity,_ §y_mmetr3andidentityfo|low
from the de nition. Strict positivity p 6 qthendmin(p;q) >
0 iff there is a landmark with d; (p) 6 dr(g). If the contours
of landmark distances (where distances are constant) are a
When solving for distance metrics (for example with lin-  1-dimensional set, such as if they were geodesic distances,
ear/quadratic programs), it might be interesting to repre- then the set of points sharing equal distance to all landmarks

sented these over nite distance elds as discussed here (Sec.decreases in dimension with each additional landmark. So
3.1). for a xed point pthe sef qjdmin(p; g) = Ogis a set of curves

for 1 landmark, a set of points for 2 landmarks and will be
Additionally, it would be interesting to investigate the in-  only p itself for more than 3 landmark3riangle inequal-

formation that general pairwise distanceRF10 SRGB14 ity: For a single landmark the triangle inequality is assured:
share and it would be interesting whether a generalization of jd(p;r) d(g;r)j = jd(p;r) d(r;x)+ d(r;x) d(q;r)j
our method is applicable in their setting. jd(p;r) d(r;x)j+ jd(r;x) d(q;r)j. Letr be the landmark

The de nite version is available &ttp://diglib.eg.org/
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maximizing the left side, then also for this landmark the in-

equality is ful lled and the right side is only increased re-
placing single landmark distances wihyn. For dmax posi-
tivity andsymmetnyfollow from the de nition. Strict positiv-
ity follows from the strict positivity of the landmark distance
metric. Identity is only true at landmark points, otherwise

d(p; p) > d(p;r) > O.

Eq. 10& 11dmin(p;a)  d(p;a) andd(p;q)  dmax(p; q)
is a reformulation of the triangle inequality and true for dis-
tance metrics.

EQ. 128r 2 R dmax(r;p)  d(r; p) + d(r;r) = jd(r; p)
d(r;n)j  dmin(r; p). Thusd(r; ) = dmin(r; ) = dmax(T; ).

Eq. 13emad{P;d)  emin(P; ) = dmaxdP;0) dmin(p;0q)
dimax(P; ) diin(P; Q) (d(p;r) + d(g;r))
jd(p;r)  d(gir)j  (d(p;r) + d(g;r)) + min(d(p;r)
d(gir);d(air)  d(p;r))  2min(d(g;r);d(p;r))-

Eq. 14 First we look at a single
From jd(p;r)  d(g;n)j  d(p%r)+ d(p®p)
d(p®r) d(gr) d(p%p) and jd(p;r)
d(g;r)  (d(p%r)+ d(p%p)) follows jd(p;r)
jd(gir)  d(p%nj  d(p%p) and d(p;q)
digni  (d(p;a) + d(p®p)  (d(g;r)
d(p% p)).

If we know efn(pia)  ehin(pha) + 2d(p%p)
then there is onoer0 with e[(pm(po;q) = emin(p%0)
and eyin(pi0)  Enn(Pia)  Enin(p%a) + 2d(p% p)
emin(p% )+ 2d(p% p).

Eq. 15 From d(p;q)
(d(pir) + d(g;r))  d(p;a)

d(gr)  (d(p%a)  d(p;pY).
landmarks is analog to above.

landmarkr.
d(a;r)
d(a;r)j
d(a;r)j
j d(p;r)
d(p%n)j

d(p%a) d(p;p%) follows
(d(p:p) + d(p%r) +
Transfer onto multiple

Thm.2 Thm.l stays valid as all utilized requirements
w.r.t. dmin are still valid. Eq. 22 8r 2 R dmax(r; p)

jd(rp)j + jd(rn)j = jd(r;p)  d(rr)j Amin(r; P)
Eqg. 23 We assume that distance

are induced from a distance metric. c

Then ifa< e+ f andb< e+ f aﬁb
follows efin(B;C) = €§in(AC) = N armaran 2

CafAB)=a+b e f 2n

cont. Thm.2 For two pointsp andq distanceSmin( p; q)
and dmax(p;q) are induced by two landmarks and r»
(where they are minimal/maximalfimin(p;q) is a lower
bound anddmax(p; ) is an upper bound on distances be-
tweenp andg induced by the triangle inequality from and
ro2. Thusdmax(P; @) < dmin(p; g) iff landmarks contradict the
triangle inequality inp andg.
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