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Simple, Robust, Constant-Time Bounds on Surface Geodesic
Distances using Point Landmarks

Oliver Burghard and Reinhard Klein

Bonn University

Figure 1: The lower bound dmin is a good distance approximation (a), such as the upper bound dmax on the backside (b; 30
landmarks). The quality of dmin on the Stanford Dragon (c) can be seen in its low relative error (d; 100 landmarks).

Abstract

In this paper we exploit redundant information in geodesic distance �elds for a quick approximation of all-pair
distances. Starting with geodesic distance �elds of equally distributed landmarks we analyze the lower and upper
bound resulting from the triangle inequality and show that both bounds converge reasonably fast to the original
distance �eld. The lower bound has itself a bounded relative error, ful�lls the triangle equation and under mild
conditions is a distance metric. While the absolute error of both bounds is smaller than the maximal landmark
distances, the upper bound often exhibits smaller error close to the cut locus. Both the lower and upper bound
are simple to implement and quickly to evaluate with a constant-time effort for point-to-point distances, which are
often required by various algorithms.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

Geodesic distances on surfaces are an important tool pro-
viding intrinsic information derived from the metric. Even
though there has been much research in approximating
geodesic distances their calculation can take a signi�cant
time in current processing.

To motivate our approximation notice that distance �elds
at different points typically share a lot of common infor-
mation (see [XYH12] for a discussion and our later analy-
sis). The triangle inequality estimates lower and upper dis-
tance bounds between two points based on distances to a
third point. Starting with a reasonable set of landmark points
we derive a lower and upper bound on all-pair geodesic dis-
tances. We analyze these bounds and show that they are ac-
curate, simple to implement and ef�cient to compute.

The lower bound has itself a bounded relative error, so that
it can be used as an approximation for geodesic distances.
The upper bound often exhibits smaller absolute errors close
to the cut locus, which makes them better suited for certain
class of applications. And because the difference of lower
and upper bound is limited by the maximal distance of land-
mark points, so is the absolute approximation error by both
bounds.

Under the mild condition that no point has equal dis-
tances to all landmarks (which should not happen for more
than 3 landmarks) the lower bound is a distance metric
(dmin(p; p) = 0, triangle equation andp 6= q ) dmin(p;q) >
0). As some ef�cient methods for calculating geodesic do
not assure the triangle equation (e.g. [CWW13]), our lower
bound might be used as an approximation instead.
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Our distance �elds are ef�cient to compute in the sense
that there is a constant effort required for calculating bounds
on the distance of two points. Often algorithms depend on
pairwise distances only instead of global distance �elds (e.g.
Karcher means or Voronoi regions). Such algorithms will be
typically much faster with our approach, than with global
distance �elds (see [CWW13,XWL � 15]).

2. Related work

Calculating geodesic distance �elds there are two different
classes of algorithms, exact and approximate ones. Exact
algorithms [MMP87, CH90, XW09, XWL � 15] often utilize
that single-source distances (on a piece-wise linear mesh)
equal to a set of quadratic functions on an edge (called win-
dows). Similar to Dijkstra on graphs, they distribute win-
dows between triangles over adjacent edges. Best algorithms
have a complexity ofO(n2) [CH90,XWL � 15], which is min-
imal [XWL � 15] and thus their complexity is optimal.

Exact distances are often not critical for applications as
long as errors are small. Indeed frequently used piece-wise
linear surfaces often are an approximation of a continuous
surfaces themselves. Geodesic distances solve the Eikonal
PDE:kr dp(x)k = 1, so that [KS98] approximate geodesics
as solutions to this equation. Their approach hast a complex-
ity of O(n logn)) . Predicting the geodesic gradient from heat
diffusion [CWW13] speeds up approximation further. Ignor-
ing a one-time matrix factorization, it reduces the complex-
ity to O(n) per distance �eld, which is trivially optimal for
an entire distance �eld.

Yet this complexity is not optimal when approximating a
point to point distances. Typically applications require only
few distances and not the whole distance �eld, e.g. cal-
culating Karcher means [Kar77], intrinsic Voronoi regions
[XW10] or non-rigid registration [HAWG08]. After prepro-
cessing a constant time approximation, i.e. not depending on
the number of mesh vertices such as our algorithm, would be
optimal.

A different set of algorithms has this constant complexity
for point to point distances. They de�ne intrinsic distances
by embedding a manifold into some euclidean space and
back-projecting the distance metric [LRF10, CL06, QH07].
This construction guarantees a distance metric with constant
time point to point distances. Still no embedding has been
found so that distances are assured to approximate geodesic
distances (indeed exact preservation of geodesic distance is
often impossible).

[XYH12] proposed a method for constant time geodesic
distance approximation with a similar motivation such as our
method. From equally spaced landmarks they construct a
coarse intrinsic Delaunay triangulation on the surface with
precomputed pair-wise distances on the landmarks. Mesh
distances are then interpolated utilizing this triangulation by

projecting quadrilaterals into the euclidean plane, as side
lengths and one diagonal are known.

Their method is similar to ours and delivers good approx-
imations to the exact distances. Yet their approximations
might be lead to less smooth, even non-continuous distance
�elds as they depend on the induced coarse triangulation
(which changes non-continuously). They have no bounds
on the approximation error and their approximated distance
might not be a distance metric. See Sec.4 for a comparison.

The paper is structured as follow: First we introduce our
lower and upper bounds on geodesic distances. Then we
analysis their properties and error bounds. Finally we show
qualitative and quantitative evaluations.

3. Landmark induced distance bounds

To motivate our method notice that on a surface all-pair
geodesic distances share much redundant information. For
example, each distance �eld fromp amounts to the informa-
tion of all shortest paths starting inp. Therefore with all-pair
distances all geodesics, which shortest paths are subsets of,
can be reconstructed and vice-versa.

A distance �eld is typically required or desired to adhere
to the triangle inequality, that is the shortest path fromp to q
must get longer if we additionally require that it passes some
other pointr:

d(p;q) � d(p; r) + d(r;q) (1)

Subtraction ofd(p; r) and changingq and r gives a refor-
mulation with alower andupperbound on distanced(p;q)
induced by a distance �eld from some landmark pointr:

jd(p; r) � d(r;q)j � d(p;q) � d(p; r) + d(r;q) (2)

Unifying bounds induced by a set of landmark pointsR=
f r1; : : : ; rkg we gain the following bounds:

De�nition 1 The minimal and maximal induced distances of
the landmarksRover the distance metricd : M�M ! R+

0
are:

dmin(p;q) := max
r2 R

jd(r; p) � d(r;q)j (3)

dmax(p;q) := min
r2 R

d(r; p) + d(r;q) (4)

The actual landmarkr that gave rise to a maximum of
dmin(p;q) or a minimum ofdmax(p;q) is called theinducing
landmark. We add an upperr index to denote the distance
w.r.t. a single landmark and will use this also on upcoming
de�nitions: dr

min, dr
max.

For completeness we quickly recapitulate properties
de�ning a distance metric:

De�nition 2 A pseudo distance metric is a mapd : M �
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pos sym ident strict pos tri. ineq.
dmin X X X mostly X
dmax X X � X (mostly) �

Figure 2: Properties emerging from the de�nitions of dmin
and dmax (see Theorem1). Properties in brackets are valid
for landmark distances that do not emerge from a proper
distance metric (see Sec.3.1).

M 7! R with (8p;q; r 2 M )

d(p;q) � 0 (pos) (5)

d(p;q) = d(q; p) (sym) (6)

d(p; p) = 0 (id) (7)

d(p;q) � d(p; r) + d(r;q) (tri. ineq.) (8)

A distance metric is a pseudo metric with (8p;q 2 M )

d(p;q) > 0 if p 6= q (strict pos) (9)

As the next Theorem and Tab.2 showsdmin and dmax
share several desirable properties:

Theorem 1 dmin(p;q) is a pseudo distance metric and a
proper distance metric iff there are no points with equal dis-
tances toall landmarks.dmax is symmetric and strictly posi-
tive. (Please �nd all proofs in the appendix)

After de�ning the absolute approximation error as

emin(p;q) := d(p;q) � dmin(p;q) > 0 (10)

emax(p;q) := dmax(p;q) � d(p;q) > 0 (11)

there are the following relations:

dmin(r; �) = dmax(r; �) = d(r; �) (12)

emax(p;q) + emin(p;q) � min
r2 R;z2f p;qg

d(z; r) (13)

emin(p;q) � emin(p0;q) + 2d(p; p0) (14)

emax(p;q) � emax(p0;q) + 2d(p; p0) (15)

On the landmark points the approximation is exact (Eq.12).
Otherwise it is bounded by the maximal inter landmark dis-
tance (Eq.13), which assures that adding landmarks de-
creases the absolute errors. For example placing landmarks
on a torus in a regular grid,n grid points will lead to a land-
mark distance inO(

p
1=n). Thus for twice the precision 4

times the landmarks are needed.

Eq. 14 and Eq.15 allow limiting the error with dis-
tances to well approximated sets, which leads to much better
convergence. LetVmin(p) := f qj dmin(p;q) = d(p;q)g and
Vmax(q) := f qj dmax(p;q) = d(p;q)g be the sets of points
wheredmin respectivedmax are exact. Then the distance of
eitherp or q bounds the absolute error:

emin(p;q) � 2d(q;Vmin(p)) (16)

emax(p;q) � 2d(q;Vmax(p)) (17)

p r
r

p

a) b) c)

r

p

Figure 3: Top: Illustration of a few maximal shortest paths
induced from a single landmark point. Bottom: (a) The eu-
clidean line is split up by a single landmark between two
regions - one where dmin is exact and one where dmax is ex-
act. b) On the circle there due to topology in�uence there is a
third region where none is exact. c) The geodesic spanned by
r and p shown with same regions (Vmin, Vmax). Likain b due
to topology there are regions on the geodesic where neither
is exact.

Now for estimating the error one has to determine the
setVmin(p) andVmax(p), i.e. all q wheredmin or dmax are
exact. Becauseemin(p;q) = minr2 Rer

min(p;q) and analog
emax = minr2 Rer

max(p;q) determiningVr
min(p) andVr

max(p)
is suf�cient (remember that upper indices are restrictions to
single landmarks).

We assume that we have a smooth surface and for sim-
plicity assume that there is a single shortest path between
two points. For geodesic distances and some landmarkr, the
induced distancedr

min is exact iffq is located on the shortest
path ofp andr, or p is located on the shortest path ofq andr.
dmax is exact iff r is located on the shortest path connecting
p andq.

Shortest paths starting inr either intersect only inr or
one is the subset of the other. This partial ordering gives rise
to maximal shortest paths. A few of those maximal shortest
paths are visualized in Fig.3. Let R+ denote the maximal
shortest path starting inr including p, R� be the opposite
maximal shortest path located on the same geodesic. Similar
let P be the union of maximal shortest path containingr and
its opposite. Then:

Vr
min(p) = R+ \ P = R+ Vmin(p) =

[

r
Vr

min (18)

Vr
max(p) = R� \ P Vmax(p) =

[

r
Vr

max (19)
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Figure 4: Visualization of Vmin(p). For a single point p we
collect the maximal induced shortest paths from all land-
mark points (exactly one curve for each landmark). The er-
ror emin(p;q) is bound by twice the distance of q to any of
these curves. The curves of dmin have smaller lengths than
the maximal shortest paths starting in p, what we described
as the topological error (ends are marked with small ar-
rows).

In Fig. 3 we see 3 different domains and �xedp andr.
In the �rst example the euclidean line is partitioned byVmin
andVmax into two segments and for every point on the line,
eitherdmin or dmax is exact. Any subset of a geodesic (the
euclidean line) is a shortest path. Top right we see a closed
circle demonstrating the topological in�uence in comparison
with the line. There is a region where neitherdmin nor dmax
is exact. Finally bottom left we see a geodesic on a smooth
surface showing topological and tangential error.

An illustration of Vmin can be seen in Fig.4. Equally
spread landmarks create curves quickly becoming dense ev-
erywhere. Errors get smaller, the closerp andq, which in
our tests resulted in a bounded relative error ofdmin as well.
This dense �eld of lines leads to a decrease of absolute er-
rors of dmin and dmax as well as the relative error ofdmin
(emin(p;q)=d(p;q)).

Approximation errors can be classi�ed into two cate-
gories. For a good approximation one needs a landmarkr
inducing maximal shortest pathsP so thatP is close toq.
We call this �rst class of errors tangential errors. Addition-
ally r must be located onP in such a way that errors onP can
be inferred and this second class of errors we call topological
errors, as it does not appear in euclidean domains. Moving a
landmarkr alongP will change the topological error, mov-
ing r so thatP changes, changes the tangential error.

3.1. Arbitrary landmark distance �elds

The input of thedmin and dmax is strictly speaking not a
distance metric, but consists ofjRj different distance �elds
(d(r; �) := dr (�)). For the given input, there might not exist
a distance metric reconstructing input distances. This might
be due to numerical errors or might be because the input
distances were not derived from a distance metric in the

�rst place. In the following we reason about effects on the
bounds.

There are various reasons why arbitrary distance �elds
might not be compatible with any distance metric: Distances
might not be symmetric (dr (r0) 6= dr0(r)), triangle equation
might not hold between two distance �elds, distances might
not be 0 at the landmarks (dr (r) 6= 0), distance might be 0
elsewhere (dr (p) = 0; p 6= r) or distance might be negative
(dr (p) < 0). Interestinglydmin will still be a (pseudo) dis-
tance metric:

Theorem 2Given arbitrary distance �eldsdr : M ! R with
dr (r) = 08r 2 Ras input and de�nedmin anddmax as:

dmin(p;q) := max
r2 R

jdr (p) � dr (q)j (20)

dmax(p;q) := min
r2 R

jdr (p)j + jdr (q)j (21)

Then most results of Theorem1 stay valid:dmin(p;q) is a
pseudo distance metric and a proper distance metric iff there
are no points with equal distances toall landmarks.dmax is
symmetric and positive.
On landmark points there is:

dmax(r; �) � dr (�) � dmin(r; �) (22)

and for two pointsp;q 2 M the inequalitydmax(p;q) <
dmin(p;q) holds if and only if there exists two landmarks
r1,r2 where the triangle inequality can not be ful�lled for
p;q; r1; r2 (not necessarily pairwise different).

The reason why the exactness ofdmin depends only on the
triangle equation is simply that violations of identity, posi-
tivity and symmetry lead to triangle equation violations.

Let dmin[dr ] anddmax[dr ] denote the distance �elds emerg-
ing from the distancesdr at the �xed landmarks. Then
dmin[dmin[dr ]] equalsdmin[dr ], becausedmin[dr ] is a distance
metric, that will be exactly reproduced (Eq.12). This is gen-
erally not true fordmax[dmax[dr ]] = dmax[dr ].

As a simple example we inspect a triangle with edge
lengths 1;2;4, that violates the triangle inequality. All three
vertices should be landmark points. Thendmin anddmax are
2;3;4 and 1;2;3 respectively. As guaranteeddmin adheres to
the triangle inequality, but in this simple case also $dmax.
Because the triangle equation was initially violated for all
edges we havedmax � dmin everywhere.

There could be 'better' distance metric approximations.
For example, we could de�ne the optimal least squares ap-
proximation with a least squares energy

argmind is a distance metricå
r2 R

Z
(d(r;x) � dr (x))2dx

which de�nes a quadratic program.dmin is not optimal, but
for our example above 113 ;21

3 ;32
3 would be.
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Figure 5: emin and emax on different domains with up to 4
landmarks (black dots). Top rows depict an unbounded eu-
clidean space and the bottom rows a bounded torus (i.e.
warping around left-to-right and top-to-bottom). Please see
the text for further discussion. [Coordinates:� 3 to 3, land-
marks on a circle of radius

p
2, colors from 0 (light blue) to

3 (light brown) with 6 equal spaces contour lines].

4. Evaluation

To get a �rst qualitative idea of the bounds, Fig.5 contains
plots ofdmin anddmax in an euclidean plane (top) and on the
torus (bottom). There are up to 4 landmarks (black points)
and we infer bounds for the distances from the origino to
the plane. First observation is that errors are indeed bound
by twice the distance from the origin to the closest landmark
(2�

p
2 in our case) which follows from Eq.13. The error is

bound for each point by twice its distance to the closest po-
sition without error (Vmin(o) andVmax(o)). In the euclidean
plane the distances toVmin(o) and emin decrease quickly,
which is not true fordmax. The torus additionally exhibits
topological error, which leads to worse lower boundsdmin,
but affectsdmax less.

One interesting insight from the Euclidean case is that
relative errors ofdmin, i.e. emin=d are bound (if there is at
least one landmark). Letar be the minimal angle between
the shortest path fromp to q and some path inVr

min(p). Then

emin(p;q)=d(p;q) � 1� cosar

The same is true on a smooth manifold for some small neigh-
borhood aroundp. But then the relative error is also glob-
ally bound. In our experiments the largest relative errors ap-
peared locally, so that the �ner the directions of the tangent
space are sampled by shortest pathsVr

min(p), the smaller is
the maximal relative error ofdmin (see Fig.1d and Fig.10).

For evaluation on real world data we need to decide on
landmark points. In our tests we chose farthest point sam-
pling, which worked quite well. We choose a random point
�rst and then iteratively add the point with maximal distance
to all previously chosen. Distance calculations were done

dmin dmax

p
front

p

back

Figure 6: Regions colored based on the landmark induc-
ing distances to p. Regions should resemble Voronoi regions
around lines of Vmin(p) and Vmax(p).

with [CWW13] so that fork landmarks andn points the run-
time is O(kn), excluding the once required matrix factor-
ization (tests with exact geodesics [MMP87] led to similar
results).

After having landmark points spread we can evaluatedmin
anddmax on actual meshes. Fig.6 shows a cat, where two
points share the same color if distances to a �xedp are in-
duced by the same landmark. The exactness ofdmin(p;q)
depends on the minimal distance fromq to one of the sets
Vr

min(p). Thus we expect regions of same colors to resem-
ble Voronoi regions ofVr

min(p). Same is true fordmax and
Vr

max(p). In agreement with our previous writing they change
frequently fordmin, less so fordmax.

A quantitative analysis of the bounds, their distances and
absolute and relative errors were done on 3 different mod-
els in Fig.7. First 1000 landmark points and their distances
were calculated with furthest point sampling. Then the last
100 were chosen as test points, on whose distance �elds the
bounds were compared to the exact distances. The graphemin
for example contains the mean value ofemin as measured
from the test points to all others. The graph is twice loga-
rithmic, so that exponential functions become straight lines
whose slope is the exponent. Two guide lines were added
showing the functionsO(

p
1=n) andO(1=n) to which the

other plots can be set in relation. In agreement to our the-
oretical considerations, absolute errorsemin and emax and
the relative erroremin=d are decreasing similar toO(1=n),
while the distance to the closest landmark point decreases
only with orderO(

p
1=n), which is thus not the reason for

good convergence. The bounds can be further visually in-
spected in Figures8, 9 and10.

From the related work the work of Xin et al. [XYH12]
is most signi�cant, as they approximate geodesic distances
in constant time as well. For a fair comparison we chose
for their algorithm the same landmark points as for our ap-
proach, from which they then build a coarse triangulation to
infer distances. They deliver a good approximation, w.r.t. the

The de�nite version is available athttp://diglib.eg.org/
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Figure 7: Absolute and relative errors in a logarithmic plot over the number of points. In agreement with our model errors
decrease approximative withO(1=n) in contrast the distance to the closest landmark decreases only with orderO(

p
1=n).

Straight lines representO(1=n) andO(
p

1=n) for reference.
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Figure 8: Visualization of boundaries on the Tosca Cat and Stanford Dragon for a single query point (30/100 landmarks).

absolute approximation error. Yet through the in�uence of
the triangulation, their approximation is not continuous. Fur-
ther their approximation might not result in a distance met-
ric. For large Gaussian curvatures the real distances might
deviate largely for their approximation, while our method
always gives assured bounds. Finally, the implementation of
our algorithm is of a remarkable simplicity.

5. Future work

It could be well worth, investigating ideas for better land-
mark placing. We present the following simple Theorem,
that might help relating potential landmarks to the resulting
approximation error.

Theorem 3 Let p;q;s 2 M , further d(p;s) � d(p;q) and
d(q;s) � d(p;q) andhs be the shortest distance ofs to any

fr
on

t
ba

ck

30 landmarks 100 landmarks

Figure 11: Comparison to [XYH12]. They calculate con-
stant time all-pairs distances as well. We utilize the same
sample points as in our results (furthest point sampling).
Note the discontinuities and see the text for discussions.
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min/30 min/100 exact max/100 max/30

Figure 9: Visualization of boundaries on the Happy Buddha.

exact distances (colorscale 0-160) emin=d (colorscale 0%-35%)

emax (colorscale 0-26) emax=d (colorscale 0%-35%; unbounded)

Figure 10: Visualization of the errors for the Stanford dragon.

shortest path connectingp andq. Then

eq
min(p;s) = ep

min(s;q) = es
max(p;q) � hs (23)

When solving for distance metrics (for example with lin-
ear/quadratic programs), it might be interesting to repre-
sented these over �nite distance �elds as discussed here (Sec.
3.1).

Additionally, it would be interesting to investigate the in-
formation that general pairwise distances [LRF10,SRGB14]
share and it would be interesting whether a generalization of
our method is applicable in their setting.

6. Appendix

Theorem1 Fordmin positivity, symmetryandidentityfollow
from the de�nition.Strict positivity: p 6= q thendmin(p;q) >
0 iff there is a landmarkr with d̃r (p) 6= d̃r (q). If the contours
of landmark distances (where distances are constant) are a
1-dimensional set, such as if they were geodesic distances,
then the set of points sharing equal distance to all landmarks
decreases in dimension with each additional landmark. So
for a �xed point p the setf qjdmin(p;q) = 0g is a set of curves
for 1 landmark, a set of points for 2 landmarks and will be
only p itself for more than 3 landmarks.Triangle inequal-
ity: For a single landmark the triangle inequality is assured:
jd(p; r) � d(q; r)j = jd(p; r) � d(r;x) + d(r;x) � d(q; r)j �
jd(p; r) � d(r;x)j + jd(r;x) � d(q; r)j. Let r be the landmark

The de�nite version is available athttp://diglib.eg.org/
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maximizing the left side, then also for this landmark the in-
equality is ful�lled and the right side is only increased re-
placing single landmark distances withdmin. For dmax posi-
tivity andsymmetryfollow from the de�nition.Strict positiv-
ity follows from the strict positivity of the landmark distance
metric. Identity is only true at landmark points, otherwise
d(p; p) > d(p; r) > 0.

Eq. 10& 11 dmin(p;q) � d(p;q) andd(p;q) � dmax(p;q)
is a reformulation of the triangle inequality and true for dis-
tance metrics.

Eq. 12 8r 2 R: dmax(r; p) � d(r; p) + d(r; r) = jd(r; p) �
d(r; r)j � dmin(r; p). Thusd(r; �) = dmin(r; �) = dmax(r; �).

Eq. 13emax(p;q) � emin(p;q) = dmax(p;q) � dmin(p;q) �
dr

max(p;q) � dr
min(p;q) � (d(p; r) + d(q; r)) �

jd(p; r) � d(q; r)j � (d(p; r) + d(q; r)) + min(d(p; r) �
d(q; r);d(q; r) � d(p; r)) � 2min(d(q; r);d(p; r)) .

Eq. 14 First we look at a single landmarkr.
From jd(p; r) � d(q; r)j � d(p0; r) + d(p0; p) � d(q; r) �
d(p0; r) � d(q; r) � d(p0; p) and jd(p; r) � d(q; r)j �
d(q; r) � (d(p0; r) + d(p0; p)) follows jd(p; r) � d(q; r)j �
jd(q; r) � d(p0; r)j � d(p0; p) and d(p;q) � j d(p; r) �
d(q; r)j � (d(p;q) + d(p0; p)) � (jd(q; r) � d(p0; r)j �
d(p0; p)) .

If we know er
min(p;q) � er

min(p0;q) + 2d(p0; p)
then there is oner0 with er0

min(p0;q) = emin(p0;q)
and emin(p;q) � er0

min(p;q) � er0

min(p0;q) + 2d(p0; p) �
emin(p0;q) + 2d(p0; p).

Eq. 15 From d(p;q) � d(p0;q) � d(p; p0) follows
(d(p; r) + d(q; r)) � d(p;q) � (d(p; p0) + d(p0; r) +
d(q; r)) � (d(p0;q) � d(p; p0)) . Transfer onto multiple
landmarks is analog to above.

Thm.2 Thm.1 stays valid as all utilized requirements
w.r.t. dmin are still valid. Eq. 22 8r 2 R: dmax(r; p) �
jd(r; p)j + jd(r; r)j = jd(r; p) � d(r; r)j � dmin(r; p)

A e

h
ba

f B

C

Eq. 23 We assume that distance
are induced from a distance metric.
Then if a < e+ f and b < e+ f
follows eA

min(B;C) = eB
min(A;C) =

eC
max(A;B) = a+ b� e� f � 2h.

cont. Thm.2 For two pointsp andq distancesdmin(p;q)
and dmax(p;q) are induced by two landmarksr1 and r2
(where they are minimal/maximal).dmin(p;q) is a lower
bound anddmax(p;q) is an upper bound on distances be-
tweenp andq induced by the triangle inequality fromr1 and
r2. Thusdmax(p;q) < dmin(p;q) iff landmarks contradict the
triangle inequality inp andq.
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