Reflectance Field based real-time, high quality Rendering of

Bidirectional Texture Functions
Jan Meseth, Gero Miiller, Reinhard Klein

Department of Computer Science II, Bonn University, Rémerstrafie 164, 53117 Bonn, Germany

Abstract

The Bidirectional Texture Function (BTF) is a suitable representation for the appearance of highly detailed surface
structures under varying illumination and viewing conditions. Since real-time rendering of the full BTF data is
currently not feasible, approximations of the six-dimensional BTF are used such that the amount of data is reduced
and current graphics hardware can be exploited. While existing methods work well for materials with low depth
variation, realism is lost if the depth variation grows. In this article we analyze this problem and devise a new real-
time rendering paradigm based on linear interpolation of reflection fields, which provides significant improvements
with respect to realism for such highly structured materials without sacrificing the general applicability and speed
of previous algorithms. We propose real-time rendering algorithms for this new method supporting either point
light sources or image-based lighting and demonstrate the capabilities of our new approach with several examples.

Key words: Color, shading, shadowing, texture

1. Introduction

Realistic rendering of real-world objects incorporates
complex geometric models and sophisticated modelling of
the object’s surface reflectance behavior. In the field of
real-time rendering, for many years the latter task has been
covered by the well-known Phong-model|27] because of its
simplicity and computational efficiency. The (lambertian)
diffuse term of the model was allowed to vary spatially
via texture mapping. Due to the dramatic development of
rendering hardware in the last few years, it became pos-
sible to render surfaces using more enhanced and physi-
cally plausible approximations like the Lafortune[14] or the
Ashikhmin[1] model and even arbitrary bi-directional re-
flectance distribution functions (BRDFs)[10] in real-time.
Since the BRDF captures only the physical reflectance be-
havior at a microscopic scale, Dana et al.[4] introduced the

Email address: meseth@cs.uni-bonn.de (Jan Meseth).

Preprint submitted to Elsevier Science

bidirectional texture function (BTF) which can roughly
be interpreted as a tabulated BRDF-per-texel representa-
tion but which additionally includes local effects like self-
shadowing, self-occlusion and subsurface scattering. Due to
the sheer size of a BTF (hundreds of megabytes), real-time
rendering of the full data is currently not feasible. Hence
approximations of the 6D-BTF are used.

Existing approaches to real-time BTF rendering assume
common BRDF models on a per-texel basis. Implementing
low-parameter but expressive models, this results in an ex-
traordinary data compression as recently shown by McAl-
lister et al.[21]. Although this kind of approach seems to
work well for materials with low-depth variation, it leads
to unsatisfying results if the depth variation grows. In fact,
one experiences a significant loss of 3D-structure of the
surface and therefore a loss of realism in the visualization
of highly structured surfaces (compare figure 5).

As main contributions of this paper, we first provide an
in-depth analysis of fitting existing reflectance functions

11 March 2004

to BTF datasets. Based on the results and further obser-
vations, we devise implementing BTF rendering as linear
interpolation of reflectance fields. We test our approach for
two different reflectance field approximation functions and
show that this approach results in drastically reduced fit-
ting errors and thus significantly improves the visual qual-
ity of rendered images, at the expense of higher texture
memory requirements. In addition, we propose real-time
rendering algorithms that support either point- and direc-
tional light sources or image-based lighting, and describe
the integration of BTF rendering into OpenSG.

The rest of the paper is organized as follows: After re-
viewing related work in section 2 we analyze the BTFs of
highly depth-varying surfaces in greater detail in section
3. In section 4 we present our new BTF approximation.
In section 5 our hardware-accelerated rendering algorithms
and their integration into OpenSG are discussed and some
results are presented. Finally, we conclude and describe
directions for future research in section 6.

2. Related Work

Truly realistic renderings of real world materials have
to simulate the physics of light and reflection for every
surface point. Such an approach is infeasible given today’s
computing power and will likely remain in the near future.

Although simple texture and bump map representations
lead to impressive results for very simple materials, more
complex models are required to simulate the real appear-
ance of natural materials. Early results approximated a
single BRDF by a Ward|32] or Lafortune[14] model. Kautz
and McCool[10] approximate the four-dimensional BRDF
by a product of two two-dimensional functions which are
stored as textures and combined during the rendering step.
McCool et al.[22] improved the above method by em-
ploying homomorphic factorization, leading to approxima-
tions with user-controllable quality features. The above ap-
proaches were further improved by [28,30,16,17,31] which
all enable the BRDF to be lit by image-based lighting while
relying on different approximation functions.

In the context of rendering spatially varying materials,
Debevec et al.[6] presented a method for reflectance field
rendering (fixed view, varying light). They acquired and
relighted human faces exploiting a human skin reflectance
model. Malzbender et al.[20] compressed the reflectance
fields of each texel of a measured material by fitting poly-
nomials of low degree. Ashikhmin and Shirley[2] used basis
textures lit by a steerable light basis for relighting. Levoy
and Hanrahan[19] and Gortler et al.[8] simultaneously in-
troduced light field rendering (fixed light, varying view).
Miller et al.[24] parameterized light fields over surfaces in-
troducing surface light fields and employed JPEG-like com-
pression for the images. Following publications[34,3] con-
centrated on the application of different data compression
schemes.

BTF-rendering can be understood as rendering of spa-
tially varying materials under varying light and view condi-
tions. Due to the enormous amount of data in a BTF, only
few real-time rendering algorithms have been published so
far. A foundation was set by Kautz and Seidel[12] since
they introduced techniques for evaluating spatially vary-
ing BRDFs on graphics hardware. They factor the BRDFs
- given as factors of simple reflectance models - into two-
dimensional functions and store the values in textures that
are evaluated with hardware supported operations and de-
pendent texture lookups. McAllister et al.[21] published a
method based on these techniques that approximates the
BTF by pixelwise Lafortune models, which can efficiently
be evaluated in current graphics hardware. One year earlier
already, Daubert et al.[5] published a similar approach in
the context of rendering synthetic cloth BTFs. They addi-
tionally modulated the pixelwise Lafortune models with a
view-dependent factor in order to cope with self-occlusion
effects. In an approach similar to [30] Kautz et al.[13] ren-
dered spatially varying BRDFs by simply employing higher-
dimensional look-up tables.

3. BTFs of Highly Depth-Varying Surfaces

The BTF can be defined as RGB-texture that varies
with light and view direction. In this work we employ a
high-quality sampling of this function consisting of 256x256
texels in size and 81x81 poses for light and viewing direction
leading to more than 1.2GB of data (consider [29] for details
on the measurement procedure). Even with today’s most
powerful graphics hardware real-time BTF rendering via
linear interpolation of this data is rather intractable. Thus,
some kind of lossy compression has to be used.

If the per-texel data is assumed to exhibit a BRDF-
like behavior, one can simply apply every known BRDF
model/approximation (e.g. spherical harmonics[33], spher-
ical wavelets[15] or analytical models like generalized co-
sine lobes[14,1] to name a few) to each texel independently.
The demand of real-time rendering rules out linear-basis
decompositions, since they tend to use too many coeffi-
cients in modelling specularities. Unfortunately, analytical
models are not always suitable either, especially in the
case of rough and highly depth varying surfaces where the
per-texel data is strongly influenced by the surface points’
neighborhood. For such surfaces the data measured at a
single texel exhibits many asymmetric effects which recip-
rocal BRDF-models are not able to reconstruct. Figure 1
illustrates some of these effects. Note the roughness of the
data and the several dark stripes for fixed view direction
leading to significant asymmetry.

As also shown in figure 1 for the Lafortune-model such ef-
fects can not be reconstructed by reciprocal BRDF-models.
The omission of such effects during rendering leads to sig-
nificant loss of depth impression as illustrated in figure 5.

v

. Reflective Peak

Shadowing from
basic material
structure (knits)

View- dependent
effects (occlusions,
registration errors)

>
>

Original data l

Two lobe Lafortune fit

Ten lobe Lafortune fit Our method (two terms)

Fig. 1. On the left the measured data for one texel of the blue knitted wool dataset is shown (1 denotes light and v view
direction). Note, that the foreshortening term n -1 is included. In the middle two corresponding Lafortune fits with two
and ten lobes are depicted. These fits reconstruct only basic features of the material and can not capture the asymmetric
parts of the data. A fit with our method is drawn on the right. More details and asymmetric features are preserved.

Even if we increase the complexity of the model (by adding
more lobes in this case) the result is only slightly improved.

A practical problem in using analytical BRDF models
like the Lafortune or Ward model arises from the fact, that
the fit to the measured data requires costly non-linear opti-
mization by employing for example a Levenberg-Marquardt
algorithm. The results of such an optimization heavily de-
pend on a good initialization and the running times in-
crease super-linear in the number of parameters. For ex-
ample the fits depicted in figure 1 took 8 seconds for the
two-lobe and 143 seconds for the ten-lobe fit on a 3GHz
Pentium 4 employing the LINPACK-implementation of the
Levenberg-Marquardt algorithm. Hence fitting a ten lobe
Lafortune model to every texel of a 256x256-sized BTF on
a single PC would take about 100 days. The result in figure
1 generated by our method took only 2 seconds computa-
tion time. Besides leading to impractical fitting times in-
creasing the number of components also hampers real-time
rendering, since all these components have to be combined
per pixel during rendering.

Since neither linear interpolation of measured values
nor fitting of simple BRDF-style models can achieve both
high quality and real-time rendering, we propose in the
following a combination of the memory inefficient but high
quality linear interpolation strategy for rendering the full
BTF data and the efficient yet low-quality fitting strategy.

3.1. 4D BTF-Slices

Fixing the incident direction 1 of a BTF, we arrive at a
4D function called the surface light field:

LFE(x,v) := BTF(x,1,v)

Otherwise, fixing exitant direction v, the resulting function
is the patch’s surface reflectance field:

RFy(x,1) := BTF(x,1,v)

Now we propose to implement BTF rendering as mapping
and rendering a discrete set of discrete light fields (LFs)
or reflectance fields (RFs) of the measured surface onto
arbitrary geometry. Employing either LFs or SFs, the color
of a BTF-textured surface element with texture coordinate
x given local light and view direction (1, v) can be computed
as follows:

— Approximate the BTF by a set of independently fit
LFs/RFs.

— Compute the color of x according to every fitted
LF/RF and interpolate the final color from the par-
tial results.

4. Reflectance Field BTF Approximation

During our research, we tested both RF and LF ap-
proximation and found that the surface reflectance field
leads to better approximations in our approach since the
RF turned out to be generally smoother than the LF for
the samples we tested. Refer to figure 1 where the view-
dependent asymmetry leading to discontinuities for fixed
light is nicely illustrated.

Therefore the RF is better suited for fitting by compact
functional representations (e.g. polynomials) than the LF.
The discontinuous view-dependence will be preserved by
our approach, since the piecewise linear function as induced
by the linear interpolation captures this high-frequency
content of the data.

4.1. A Non-Linear RF Approzimation

An implementation of our approach can now be ob-
tained by applying view interpolation and a suitable RF
approximation which should be efficiently renderable on

today’s consumer graphics hardware and minimize the ap-
proximation error. Possible candidates that we tested are
biquadratic polynomials as in [20] and the following non-
linear function:

M~

REv(x,1) % pa(x) + ps,v(X) } _sv,j(x,1)

.
= ||
A

= pa(x) + Ps,v(x) (tv,j (x) . 1)"v,j () (1)

<.
Il
—

with ¢y j(x) being a three dimensional vector and
sv,j(x,1) similar to a Lafortune lobe discarding the exitant
direction, pg and ps denoting diffuse and specular albedo.
This model is well suited for fitting specularities and direc-
tional diffuse lobes. The parameter k controls the number
of lobes. Since we apply the function for luminance data
only, the final color is computed as in [20]. A Levenberg-
Marquardt algorithm is used for the fitting[14,21,18].
Convergence is improved via detecting principal directions
with a high-pass filter and using the recovered directions
as an initialization for the optimization.

4.2. Results

In order to measure the approximation quality of our
model quantitatively we compared the average reconstruc-
tion error per texel x given as follows:

Eg[TF(X) _ Z IBTF (x, v, 1|)A—| M(x,v,])| @)

(v,hHeA

Here, A denotes the set of discrete measured view und
light directions. M denotes the corresponding BTF-
approximation. We compared our model with the Lafor-
tune model for four lobes (higher numbers did not lead to
significantly better results but increased the fitting times
drastically as mentioned above), and the more sophisti-
cated, asymmetric model of Daubert et al.|[5].

Note, that the polynomials work well for mainly dif-
fuse materials like proposte or corduroy. For materials with
strong specularities like stone the non-linear modeling is fa-
vorable since the polynomials tend to blur specularities. As
expected, our method is especially suited for depth varying
materials like corduroy while flat materials like aluminium
are also well approximated by simpler models.

5. Real-Time Rendering

The task of the real-time rendering algorithm is to eval-
uate, for each surface point x, the following formula:

| [LAF | SLAF| RFP | RFNL]

avg | 0.0978| 0.0794| 0.0689| 0.0736
Proposte min | 0.0645| 0.0537| 0.0514| 0.0490
max| 0.1149| 0.1003| 0.0829| 0.0924

avg | 0.0788| 0.0693| 0.0719| 0.0582
Knitted Wool| min| 0.0570| 0.0527| 0.0592| 0.0459
max| 0.1056| 0.0875| 0.0857| 0.0729

avg | 0.0904| 0.0816| 0.0797| 0.0640
Stone min | 0.0368| 0.0345| 0.0523| 0.0284
max| 0.1847| 0.1767| 0.1335| 0.1321

avg | 0.1114| 0.0859| 0.0513| 0.0537
Corduroy min | 0.1003| 0.0761| 0.0416| 0.0437
max| 0.1223| 0.0948| 0.0604| 0.0639

avg | 0.0572| 0.0558| 0.0846| 0.0479
Aluminium min | 0.0391| 0.0389| 0.0773| 0.0324

max| 0.0935| 0.0889| 0.0985| 0.0782

Table 1

e for some materials and the Lafortune model with four
lobes (LAF) and additional look-up table (SLAF), the RF
approximation using biquadratic polynomials (RFP) and
using two non-linear terms (RFNL).

Ly (x,v) = / Fre(@DL;0)(n-1)dl (3)
Q;

where fr is the BRDF in point x, L; is the incoming
radiance, ; is the incident hemisphere over the surface
point X, n is the surface normal, 1and v represent local
light and view direction, and L, is the exitant radiance.

5.1. Scenes containing Simple Light Sources

Many typical applications using computer graphics use
a finite number of point light sources only since these are
supported by the common graphics APIs. For these cases,
the integral in the above rendering equation reduces to a
sum. Substituting f, . by a suitable RF approximation and
interpolating the view direction, we obtain the equation:

Lr(x,v):z Z wy (V) RFy(x,1) | LiM)(n - 1)

TeL \veEN(Y)

> we@® Y (RE&DLDn-D) (1)

veN(¥) ieL

where L represents the set of light sources, N(¥) denotes
the index set of view directions from the measured BTF
data that are neighboring v, and w, denotes the weight
for the reflectance field RF),.

The rendering process that evaluates the rendering equa-
tion is depicted in figure 2. The inputs are standard texture
coordinates, the eye and light positions, and a per-pixel
coordinate system, which is interpolated from the local co-
ordinate systems at the vertices which are specified with
the geometry.

LT —
Coordinates

T

Eye Closest Measured
Position /v View Directions v, ... v,
Local View

Direction v
Local \ @ » View Interpolation

Coordinate Weights w,,,... W3

Reflectance
Fields RF,...RF,

System
Local Light
Light Direction |

Position

@_, Uninterpolated
colors uj... Uy

Rectangular
Texture

Cube Map
Texture

RF Evaluation

®—> Final Color

4

Weighted Sum

@@@D

Fig. 2. Data flow of the rendering algorithm for scenes containing simple light sources only.

‘We first compute view and light directions and transform
them into the pixel’s coordinate system. Using cube maps,
we lookup the indices to the three closest view-directions
from the measurement process, together with their interpo-
lation weights. Combining the current texture coordinates
and the index to the closest view direction, we lookup the
parameters for the respective RF which are stored in a
rectangular texture. We evaluate the pixel’s color accord-
ing to the chosen RF approximation. If interpolation is
used, this evaluation is repeated for the two other closest
view directions. The unweighted colors u,; are multiplied
with the respective interpolation weights w; and summed
to form the final color of the pixel.

5.2. Scenes lit by Image-Based Lighting

‘While simple light sources yield sufficient results in many
cases, they cannot represent natural lighting as e.g. in out-
door scenes. This is far better accomplished by Image-
Based Lighting techniques|7]. Previous methods combining
reflection models and image-based lighting (e.g. [9,11,21])
are commonly based on two simplifying assumptions. First,
the lighting environment is assumed to be at an infinite dis-
tance from the lit object. Second, for non-diffuse reflections
the Lambertian cosine term accounting for the area fore-
shortening is approximated|[11]. With these assumptions,
analogously to McAllister et al.[21], the rendering equation
for our non-linear RF approximation changes to:

L (%, V)~ pa(x) D(0) + _wo(¥)ps,u(x) -

veEN (V)

k
>s (t(X)II o (x)) w5 GO0 (02,5 ())

ty (X
27\t ()

where D(n) and S(t,n) denote diffuse and specular pre-
filtered environment maps. Please note that in this case the
global rather than the local light direction is used. Please
note as well that in this case ¢, ; (from equation 1) denotes
a vector concerning the global coordinate system. Other
than in [21] our rendering method requires view interpola-
tion of the specular contribution.

In addition to the data used for scenes with simple light
sources only, we employ a cube map that stores for every
texel the coordinates for a parabolic map[9]. A rectangular
texture stores the prefiltered lighting environments for var-
ious sampled exponents n (here: n = 2% for i =0...10).

The rendering process is depicted in figure 3. The inputs
are standard texture coordinates, the eye’s position, a per-
pixel coordinate system and the inverse transformation
matrix — both interpolated from the matrices at the vertices
which are again specified with the geometry.

Computing the local view direction, determining closest
measured view directions and interpolation weights, and
fetching the RF parameters is analogous to the rendering
algorithm for simple light sources. For the evaluation of
the rendering algorithm, we first transform each lobe’s di-
rection ¢, ;(x) into the global coordinate system (in which
the lighting environment is defined as well). The result-
ing directions t are used to first determine parabolic map
texture coordinates p which - combined with the rounded
lobe exponent - serve as indices to lookup the incoming
radiance L from the prefiltered environment maps.

Finally, the incoming radiances for the various lobes
are scaled according to the exponentiated lengths of the
respective lobes, weighted by the approximated foreshort-
ening term and summed. View interpolation is again the
same as for the case of simple light sources.

5.3. Results

Figure 4 shows a comparison between RF based BTF
rendering and simple bump-mapped texturing. The BTF
textured version captures the look-and-feel of the corduroy
material far better. The seat model renders at about 21
fps on an NVidia Geforce FX 5800 graphics board using
our OpenGL implementation. Figure 6 shows a shirt model
lit by natural, image-based lighting. The rendering speed
is somewhat slower (about 14 fps). Please note that the
frame rates are largely independent of the complexity of
the rendered model since our algorithm is mainly fill-rate-
limited.

During rendering of the non-linear RF approximation,
we sometimes experienced disturbing white pixels, which
result from the fitting procedure: the computed lobes may

Inverse Local
Coordinate @ .
System

T
Texture D Reflectance
Coordinates " Fields RF,...RF,

Global Lobe
Directions t;;... t,,

+—l
D Prefiltered Incoming
Radiance L,,... Ly

Parabolic Map D Rectangular

Texcoords py;... Pa Texture
Cube Map
Texture

@ RF Evaluation

Uninterpolated

) > Transform to

Eye @ Closest Measured
Position View Directions v, ... v,
N\ Local View /

colors u,...u,

+—A
@—’ Final Color

Global Coordinates

@ Weighted Sum

Coordinate
Weights w,... W,
System g v1--- Whg

Direction v
Local \ @ View Interpolation

Fig. 3. Data flow of the rendering algorithm for scenes lit by image-based lighting.

lead to floating point overflows in the graphics hardware
during rendering, which is partially due to the specific
graphics hardware and partially to rather high exponents.
Using 16 bit instead of 32 bit floating point values, these
problems occurred more frequently.

Another problem we needed to solve is memory con-
sumption. Due to the large number of parameters per mate-
rial texel in our model and their representation as floating-
point numbers, our rendering method requires about 365
MB for a 256 x 256 BTF with 81 reflectance fields if 32 bit
floating-point values are used. This large amount of mem-
ory can either be reduced using texture synthesis meth-
ods as done by Meseth et al.[23] (which additionally solves
the problem of texturing large model regions but remains
limited to rather small base textures) or using clustering
approaches like Miiller et al.[25].

5.4. Rendering within OpenSG

In order to make BTF rendering available for virtual
reality applications, we chose to integrate it into the open
source scene graph system OpenSG[26].

The basic control element for rendering in OpenSG
is the Chunk, which is used to control the OpenGL
state. Especially useful for our implementation are the
subclasses TextureChunk, CubeTextureChunk, VertexPro-
gramChunk and FragmentProgramChunk. The first two
ones are used to encapsulate the various texture formats
offered by OpenGL (2D, 3D, cube) whereas the second
two encapsulate vertex- and fragment-programs.

Since our BTF rendering algorithms require per pixel
parameters to be stored as floating-point values in order
to achieve sufficient quality, a few new classes need to be
implemented that are currently not supported by OpenSG.

OpenGL offers high precision by providing 16 bit and
32 bit floating point values to be stored in textures. In
OpenSG, textures are rather tightly bound to the Image
class, which unfortunately does not support floating point
formats explicitely so far. Therefore, either the Image class
needs to be extended or a new class FloatImage needs to
be implemented. Additionally, loaders have to implemented
for the floating point file formats in which the BTF data is
stored. Finally, a new texture class has to be implemented
that encapsulates rectangular textures. These textures al-

low more efficient storage by allowing arbitrary heights and
widths and - for NVidia based graphics boards - are the
only way to access floating point valued textures.

The higher level primitive which is used to finally en-
capsulate the BTF rendering is the Material. An imple-
mentation should use an instance of the ChunkMaterial
class that gets handed the correct textures, fragment- and
vertex-programs as Chunks at initialization time.

6. Conclusions

In this work, we presented an in-depth analysis of the
real-time rendering problem for highly depth varying BTF
materials. We demonstrated why existing algorithms have
problems with such materials and proposed a new method
that achieves high-quality results at the expense of consum-
ing more texture memory than existing real-time methods.

The rather poor frame rates that we experienced are
apparently largely due to the OpenGL driver since it ap-
pears not to be optimized to handle large amounts of tex-
ture memory (especially if floating-point valued textures
are employed). We expect these problems to be resolved
by future driver versions. In addition, newer generation
graphics boards already feature higher transfer rates and
will likely be equipped with bigger and more efficient tex-
ture caches in the future which would both speed up our
rendering algorithms.

For future work, we will simultaneously try to further
reduce the amount of memory required by our method
and increase its approximation quality, implement mip-
mapping techniques and fully integrate our method into
OpenSG.

Acknowledgements

This work was partially funded by the European Union
under the project RealReflect (IST-2001-34744). We want
to thank André Nicoll for helping with the implementation,
Mirko Sattler for fruitful discussions and Paul Debevec
for the HDR environments. Special thanks belong to Ralf
Sarlette who provided the BTF measurements.

References

[1] Ashikhmin M, Shirley P. An Anisotropic Phong BRDF
Model. Journal of Graphics Tools 2000;5(2): 25-32.

[2] Ashikhmin M, Shirley P. Steerable Illumination
Textures. ACM Transactions on Graphics 2002;21(1):
1-19.

[3] Chen W-C, Bouguet J-Y, Chu MH, Grzeszczuk R. Light
Field Mapping: Efficient Representation and Hardware
Rendering of Surface Light Fields. Proceedings of
SIGGRAPH 2002, 2002. p. 447-56.

[4] Dana KJ, van Ginneken B, Nayra SK, Koenderink JJ.
Reflectance and Texture of Real World Surfaces.
Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, 1997. p. 151-57.

[5] Daubert K, Lensch H, Heidrich W, Seidel H-P. Efficient
Cloth Modeling and Rendering. Proceedings of 12th
Eurographics Workshop on Rendering, 2001. p. 63-70.

[6] Debevec P, Hawkins T, Tchou C, Duiker H-P,
Sarokin W, Sagar M. Acquiring the Reflectance Field
of a Human Face. Proceedings of SIGGRAPH 2000,
2000. p. 145-56.

[7] Debevec P, Lemmon D. Image-Based Lighting.
SIGGRAPH 2001 Course notes, 2001.

[8] Gortler S, Grzeszczuk R, Szeliski R, Cohen M. The
Lumigraph. Proceedings of SIGGRAPH 1996, 1996. p.
43-54.

[9] Heidrich W, Seidel H-P. Realistic, Hardware-
Accelerated Shading and Lighting. Proceedings of
SIGGRAPH 1999, 1999. p. 171-78.

[10] Kautz J, McCool MD. Interactive Rendering with
Arbitrary BRDFs using Separable Approximations.
Proceedings of Tenth FEurographics Workshop on
Rendering, 1999. p. 281-92.

[11] Kautz J, McCool MD. Approximation of
Glossy Reflection with Prefiltered Environment Maps.
Proceedings of Graphics Interface 2000, 2000. p. 119-26.

[12] Kautz J, Seidel H-P. Towards Interactive Bump
Mapping with Anisotropic Shift-Variant BRDFs.
Proceedings of Graphics Hardware 2000, 2000. p. 51-58.

[13] Kautz J, Sloan P-P, Snyder J. Fast, Arbitrary BRDF
Shading for Low-Frequency Lighting Using Spherical
Harmonic. Proceedings of 13th Eurographics Workshop
on Rendering, 2002. p. 301-08.

[14] Lafortune EPF, Foo S-C, Torrance KE, Greenberg DP.
Non-linear Approximation of Reflectance Functions.
Proceedings of SIGGRAPH 1997, 1997. p. 117-26.

[15] Lalonde P, Fournier A. A Wavelet Representation
of Reflectance Functions. IEEE Transactions on
Visualization and Computer Graphics 1997;3(4):329—
36.

[16] Latta L, Kolb A. Homomorphic Factorization of
BRDF-based Lighting Computation. Proceedings of
SIGGRAPH 2002, 2002. p. 509-16.

[17] Lehtinen J, Kautz J. Matrix Radiance Transfer.
Proceedings of Symposium on Interactive 3D Graphics,
2003. p. 56-64.

[18] Lensch H, Goesele M, Kautz J, Heidrich W, Seidel
H-P. Image-Based Reconstruction of Spatially Varying
Materials. Proceedings of 12th Eurographics Workshop
on Rendering, 2001. p. 103-14.

[19] Levoy M, Hanrahan P. Light Field Rendering.
Proceedings of SIGGRAPH 1996, 1996. p. 31-42.

[20] Malzbender T, Gelb D, Wolters H. Polynomial Texture
Maps. Proceedings of SIGGRAPH 2001, 2001. p. 519-
28.

[21] McAllister DK, Lastra A, Heidrich W. Efficient
Rendering of Spatial Bi-directional Reflectance
Distribution Functions. Proceedings of Graphics
Hardware 2002, 2002. p. 78-88.

[22] McCool
MD, Ang J, Ahmad A. Homomorphic Factorization of
BRDFs for High-Performance Rendering. Proceedings
of SIGGRAPH 2001, 2001. p. 171-78.

[23] Meseth J, Miiller G, Klein R. Preserving Realism
in Real-Time Rendering of Bidirectional Texture
Functions. Proceedings of OpenSG Symposium 2003,
2003. p. 89-96.

[24] Miller G, Rubin S, Ponceleon D. Lazy Decompression
of Surface Light Fields for Precomputed Global
Ilumination. Proceedings of 9th Eurographics
‘Workshop on Rendering, 1998. p. 281-92.

[25] Miiller G, Meseth J, Klein R. Compression and real-
time Rendering of measured BTFs using local PCA. To
appear in Vision, Modeling, and Visualization 2003

|26] www.opensg.org

[27] Phong BT. Ilumination for Computer Generated
Pictures. Communications of the ACM 1975;18(6):
311-17.

[28] Ramamoorthi R, Hanrahan P.
Environment Map Rendering.
SIGGRAPH 2002, 2002. p. 517-26.

[29] Sattler M, Sarlette R, Klein R. Efficient and Realistic
Visualization of Cloth. Proceedings of Eurographics
Symposium on Rendering, 2003.

[30] Sloan P-P, Kautz J, Snyder J. Precomputed Radiance
Transfer for Real-Time Rendering in Dynamic, Low-
Frequency Lighting Environments. Proceedings of
SIGGRAPH 2002, 2002. pp. 527-36.

[31] Sloan P-P, Hall J, Hart J, Snyder J. Clustered
Principal Components for Precomputed Radiance
Transfer. Proceedings of SIGGRAPH 2003, 2003. p.
382-91.

Frequency Space
Proceedings of

Fig. 4. Comparison of our rendering technique (left) with approximated bump-mapping (right). The same light configurations
were used in both pictures. Using our technique, the 3D structure of the corduroy material on the car seat appears realistic,
while bump-mapping clearly misses the highlights for grazing light angles.

Fig. 5. Comparison of BTF rendering approaches. While
the 2-lobe Lafortune model (left) fails to generate depth
impression, the asynchronous model of Daubert (middle)
achieves more realistic results. With out method (right),
the depth impression is maximized.

[32] Ward GJ. Measuring and Modeling Anisotropic
Reflection. Proceedings of SIGGRAPH 1992, 1992. p.
265-72.

[33] Westin SH, Arvo JR,
Torrance KE. Predicting Reflectance Functions from
Complex Surfaces. Proceedings of SIGGRAPH 1992,
1992. p. 255-64.

[34] Wood DN, Azuma DI, Aldinger K, Curless B,
Duchamp T, Salesin DH, Stuetzle W. Surface Light
Fields for 3D Photography. Proceedings of SIGGRAPH
2000, 2000. p. 287-96.

Fig. 6. Example of Image-Based Lighting using our
non-linear RF approximation. Top: A shirt covered with
Aluminium in the Galileo environment. Bottom left and
right: diffuse and specular part of appearance.

