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Abstract

The problem of rendering large trimmed NURBS models
at interactive frame rates is of great interest for industry,
since nearly all their models are designed on the basis of
this surface type. Most existing approaches first transform
the NURBS surfaces into polygonal representation and sub-
sequently build static levels of detail upon them, as current
graphics hardware is optimized for rendering triangles.

In this work, we present a method for memory efficient,
view-dependent rendering of trimmed NURBS surfaces that
yields high-quality results at interactive frame rates. In con-
trast to existing algorithms, our approach needs not store
hierarchies of triangles, since utilizing our special multi-
resolution Seam Graph data structure, we are able to gen-
erate required triangulations on the fly.

Keywords: NURBS rendering, non-manifold data struc-
ture, level of detail

1. Introduction

The industrial design of models for prototyping and pro-
duction is nearly always performed with the support of
Computer Aided Design (CAD) geometric modelling tools.
The fundamental geometric entities in such systems are
trimmed Non-Uniform Rational B-Splines (NURBS) due to
their ability to conveniently describe surfaces of almost any
shape. Since current graphics hardware does not support
direct rendering of trimmed NURBS in their original rep-
resentation as sets of control points, they need to be trans-
formed into e.g. a polygonal representation – this process
is referred to as tesselation. Rendering these tessellations at
high frame rates is an important problem, as many models
from industry are very complex per se (typically thousands
of patches) and thus require millions of triangles to be ren-
dered for an accurate visualization. This imposes high de-

mands not only on the graphics hardware but on storage as
well.

Reducing the number of triangles to be rendered can be
achieved by multiple techniques: on the one side, level of
detail (LOD) techniques try to avoid generating triangles
before sending them to the graphics pipeline, on the other
side, culling techniques try to avoid rendering triangles by
deciding their visibility status. Traditionally, the number of
triangles of a trimmed NURBS surface to be rendered could
never be reduced below the number of patches the surface
consisted of, since patches were treated as individual entites
that had no relation to their neighbors. This becomes a prob-
lem in scenes that consist of huge amounts of small patches
- a quite common scenario in industry. This shortcoming
was based on the fact, that many models contain tiny but
important cracks between the borders of the patches, which
prohibits the explicit definition of neighborhood.

We introduce a new method for rendering complex
trimmed NURBS surface at interactive frame rates which
is capable of reducing the number of rendered triangles far
below the number of patches of the original model. Our
method combines a trimmed NURBS sewing algorithm,
LOD techniques for both the NURBS surface and its trim-
ming curves, and standard culling techniques like backface-
and view-frustum culling. Additionally we ease the mem-
ory problem, since our method requires far less storage than
comparable approaches.

1.1. Main Contributions

The main contribution of this paper is a view-dependent
level of detail algorithm for visualization of trimmed
NURBS models that:

• renders complex trimmed NURBS at interactive frame
rates and high quality, by providing correct normals
and guaranteeing a maximum geometric approxima-
tion error; this is achieved by tessellating only those
original patches that are visible and large enough to be
seen



• is highly memory efficient since only triangles of the
currently rendered LOD need to be stored; no triangle
hierarchies need to be stored!

• is combined with view-frustum and backface culling
and can easily be extended to include occlusion culling

• maintains the original NURBS surfaces and paramet-
ric coordinates leading to analytically correct normals,
curvature and other surface features like texture coor-
dinates

• handles non-manifold trimmed NURBS models

• is easily parallelizable

• allows to simplify the whole trimmed NURBS model
down to a single point

1.2. Paper Structure

The rest of the paper is organized as follows: in section
2 results from related areas are discussed, in section 3 we
present an outline of our algorithm, section 4 provides the
background on trimmed NURBS surfaces and the sewing
algorithm. Section 5 covers the data structure for manag-
ing the levels of detail of the poly-lines, along which the
patches were sewn. Section 6 provides details on the ren-
dering of the trimmed NURBS surface, the LOD selection
and the culling techniques we employ. Section 7 reports
results, section 8 concludes and describes future work.

2. Related Work

2.1. Trimmed NURBS rendering

The problem of rendering trimmed NURBS surfaces has
been devoted large interest from researchers for a long time
now. Different approaches emerged for visualization, e.g.
ray-tracing the surfaces (e.g. [24]), pixel level subdivision
(e.g. [27]) or polygon tessellation (e.g. [5], [17]), of which
the triangle based methods are generally much faster due to
recent advances in graphics hardware. E.g. Baxter et al.
[2] recently published their research on a parallelized sys-
tem for interactive walkthroughs of huge triangulated mod-
els (e.g. generated from trimmed NURBS models), but –
other than our method – they require a multiprocessor sys-
tem and massive amounts of memory for storing the hierar-
chical static levels of detail.

However, most current approaches deal with individual
curves or surfaces and make no attempt to construct one
mesh out of several patches, resulting in potentially less tri-
angles. Approaches to reduce the number of triangles used
for visualization include the one of Kumar et al. [19], which

introduces the notion of super-surfaces but requires a pri-
ori connectivity information. They statically cluster sets of
trimmed NURBS patches into so-called super-surfaces that
need to be sewn at run-time. While they require at least one
triangle per super-surface, our approach is capable of re-
ducing the total number of triangles to be rendered to zero.
Another approach of Kumar et al. [18] only deals with very
specific configurations of trimmed NURBS surfaces that are
stacked on top of each other.

Various techniques exist to repair CAD models by e.g.
converting them into a volumetric representation, subse-
quently removing the topological noise by morphological
open and close operations and finally reconstructing the
mesh from the implicit function defined by the volumet-
ric representation [25]. Barequet et al. [1] and Kahlesz et
al. [13] both determine corresponding edges of different
patches and then sew them together. While Barequet et al.
can only guarantee an approximate error bound since they
work in parametric space, Kahlesz et al. guarantee accurate
sewing in euclidean space.

2.2. Level of detail

Creating levels of detail (LOD) for geometric objects
has become a common approach in the last decade. Re-
searchers all over the world focused on this topic and ex-
cellent results could be achieved already. A recent sur-
vey of LOD techniques can be found in [21]. One of the
early results was published by Hoppe [10], who introduced
progressive meshes: a sequence ofn edge collapse oper-
ations that transform an arbitrary meshMn into a simpler
one M0, which containsn less vertices than the original
mesh. Since the edge collapse is easily invertible (the in-
verse operation is called vertex split), the base meshM0 can
be refined again, resulting in progressive, smooth LODs.
This approach was improved to yield view-dependent, pro-
gressive LODs for manifold objects by Xia et al. [31],
Hoppe [11] and Klein [15], while Luebke et al. [22] in-
troduced view-dependent LODs for meshes with arbitrary
topology. The view-dependence allows to selectively re-
fine interesting regions of a model while keeping others at a
coarser LOD. El-Sana and Varshney introduced the vertex-
numbering scheme in [3], which encodes the partial order-
ing of the simplification steps of the progressive LOD hi-
erarchy very efficiently. A recent publication proving the
efficiency of the view-dependent approach is [26].

A crucial part of every LOD algorithm is the error mea-
sure that describes the difference between the original and
any subsequent mesh resulting from some sequence of sim-
plification steps, since this measure determines the order, in
which primitives are to be removed. The measure of choice
for view-dependent simplification, the Hausdorff distance
(which is adopted in our work), was first employed for mesh



decimation purposes by Klein et al. [16] and describes the
maximum distance between two sets of points. Other LOD
algorithms most commonly use error quadrics, a compact
and efficient representation which approximates the geo-
metric error and was introduced by Garland et al. [6]. It was
extended later to account for other appearance attributes like
color, texture coordinates and others (e.g. [7], [12]).

2.3. Non-Manifold data structures

Some of the methods described above permit topologi-
cal modifications. Nonetheless, since most of the LOD al-
gorithms are based on some variant of the half-edge data
structure, which is only defined for 2-manifold models, they
cannot handle non-manifold surfaces. In order to represent
objects with more complex topology, several data structures
were developed in the past. One of the earliest results is the
radial-edge data structure [30], which has been extended by
Gursoz et al. [9] to include relations between the local re-
gions of the vertices. A more compact structure is e.g. the
partial entity structure [20]. Another approach divides the
objects into manifold parts [8] and stitches them back to-
gether when needed, which in some sense is similar to the
approach that we employ for our work. De Floriani et al.
introduced the non-manifold Multi-Tessellation data struc-
ture [4], a memory efficient, multi-resolution data structure
for non-regular, non-manifold two-dimensional simplicial
meshes, that scales with the degree of ’non-manifoldness’
of the underlying mesh. The storage requirements for the
whole data-structure are 65 Bytes per vertex. Since we are
concerned with meshes of faces or edges only, implement-
ing their approach is not efficient enough for our purposes
at the moment.

3. Outline of the Algorithm

Given a soup of trimmed NURBS patches, the overall
algorithm can be divided into a preprocessing stage and an
interactive rendering stage.

The preprocessing stage itself consists of several phases:

1. reading a soup of trimmed NURBS patches

2. conversion of trimming curves into poly-lines guaran-
teeing an upper approximation error bound

3. sewing of adjacent poly-lines with an error in order of
magnitude of the modelling tolerance

4. generation of the hierarchical Seam Graph

The conversion of the trimming curves and the sewing
are the most time consuming parts of the preprocessing. But
the generated data can be stored efficiently on disc, since it
represents the Seam Graph without any LOD.

Note, that the sewing in the preprocessing step is not nec-
essary if the adjacency relations between boundary curves
are provided by the CAD-System.

The interactive rendering stage consists of four phases:

1. computation of the acceptable, view-dependent geo-
metric error per patch

2. selection of the view-dependent LOD in the Seam
Graph

3. culling of invisible patches

4. adaptive, view-dependent tessellation of the visible
NURBS surfaces which require updates

Note, that most approaches from literature achieve adap-
tive LOD for trimmed NURBS surfaces by adaptive tessel-
lation only. If no scheme exists to consistently adapt the
LOD of the trimming curves, either cracks will appear in
simplified models or simplification of trimming curves be-
comes impossible, resulting in far too many triangles along
the trimming curves compared to the interior of the patch’s
surface.

4. Representation and conversion of trimmed
NURBS surfaces

This algorithm consists of three stages. First the trim-
ming curves are converted to poly-lines with a controlled
approximation error. Then the poly-lines are sewn together
in 3D space. The conversion of the trimming loops into
poly-lines is necessary because the direct comparison be-
tween the trimming curves would involve their mapping
from parameter domain into 3D space. This mapping dra-
matically increases the order of the trimming curves leading
to unacceptable preprocessing times. Finally every patch
is triangulated with an approximation error using view-
dependent level of detail. The first two stages are realized
as preprocessing steps and the third is applied whenever the
level of detail changes.

To convert the trimming curves into poly-lines, the
surface and the trimming curves are first converted from
BSpline to piecewise B́ezier-representation to achieve bet-
ter and faster estimations of the approximation error. Then
the surface is subdivided with a quad-tree based hierarchi-
cal 2D grid, until the approximation error is at most a third
of the desired sewing error, to be able to approximate the
trimming curves with this error (see [13] for details). Fi-
nally we track along the trimming curves and subdivide
them at intersections with the borders of the quad-tree leafs.
These curves are then approximated by poly-lines using
midpoint subdivision and the error estimation from [13]. To



reduce the number of edges in the Seam Graph, the trim-
ming curves are first approximated using half of the desired
sewing error and then simplified until this error is reached.

4.1. Sewing

To extract the pairwise sewing intervals we improved the
algorithm from [13], to solve the reparametrization problem
that occurred, when a whole trimming loop of a thin patch
was projected to a part of a trimming loop of another surface
(see figure 1).

(a) trimming loops

(b) sewing interval with [13]

(c) sewing intervals with our algorithm

Figure 1. Sewing interval problem with very
thin patches

Instead of projecting every vertex to the nearest edge, it
is projected to every edge of the other poly-line, if the dis-
tance between the original and the projected point is smaller
than the sewing error (see figure 2), to apply an interval
growth algorithm.

Figure 2. Projection of the vertices between
two poly-lines

The algorithm then takes any projection as start point for
a sewing interval and expands it on both poly-lines. A point
is added at the end of an interval if it has a projection to any
of the two edges of its corresponding end point on the other
poly-line. If the interval cannot grow further it is stored
and all projections of points inside this interval to an edge
belonging to the interval on the other poly-line are removed.

To speed up the calculation of the distance between every

vertex of one poly-line to every edge of the other, a 3D grid
is used similar to [13].

These intervals are then combined to non-overlapping in-
tervals which sewn surfaces together. This is accomplished
by pairwise subdivision and recombination of the intervals
(see figure 3).

Figure 3. Subdivision and recombination of
sewing intervals

The trimming poly-lines are then sewn together using
these intervals. Foldovers are prevented using an arclength
reparameterization. The sewing of multiple surfaces along
a single seam creates non-manifold super-patches.

Note, that the sewing algorithm could be simplified if
adjacency relations between the trimmed NURBS patches
were provided instead of a trimmed NURBS patch soup.

5. Representation of the Seam Graph

In the following subsections, we describe our consistent
simplification method for the seams defined by the trim-
ming curves and provide details on the Seam Graph data-
structure that is employed to manage the LOD.

Figure 4. Example for the Seam Graph show-
ing vanishing patches

Figure 4 provides a simple example of a Seam Graph
which shows its capability to completely remove patches
(patches pointed at by white arrows vanish in the respective
right next picture), potentially resulting in far less triangles
to be rendered than the number of patches in the original
model.



Figure 5. Data Structure for the Seam Graph

5.1. Data Structure

The individual data types of the Seam Graph data-
structure, which was designed to handle non-manifold sur-
faces, and their relations are shown in figure 5. The Patch
data type holds a list of boundaries, which represent the
individual trimming curves of the patch. Every Boundary
consists of one or several BoundaryPart instances which
represent non-self-intersecting, non-self-touching parts of
the boundaries. Every BoundaryPart consists of a list of
BoundaryVertex instances. Pairs of vertices that are listed
consecutively in this list form an edge of the trimming poly-
line. Every element of the list can either be active or not,
meaning that the referenced vertex is currently part of the
trimming poly-line or not. This state is used during the sim-
plification and LOD selection of the trimming curves, which
is described in detail in the next section. The most essen-
tial data type of our data structure is the BoundaryVertex,
which represents the sewing points in Euclidean space. In-
stances of this type store references to the BoundaryParts
they are part of and keep sets of edges that are incident
in these points. Our last type is the BoundaryEdge, which
stores references to two vertices that limit this edge.

5.2. Level of Detail

Like most mesh simplifiers that are currently used, the
basic operation of our simplifier is the edge-collapse opera-
tion, since it yields nice results and since its inverse opera-
tion (the vertex split) can easily be performed and requires
few information to be stored, which is essential for view-
dependent progressive meshes (see e.g. [10]). Unlike most
existing simplification algorithms which process surfaces of
triangles, we developed our algorithm to work with edges
and vertices of arbitrary degree.

Implementing an edge-collapse always requires two ele-
mentary functions:

• A cost function that assigns each edge a cost, thereby

introducing an ordering among the edges reflecting the
desire to collapse some edges quickly, others at a later
point of time. Typically this measure takes into ac-
count the geometric error, texture stretch and devia-
tion, or deviation of scalar attributes like color.

• A placement function that decides where the vertex re-
sulting from the edge-collapse should be positioned.
Typically, one tries to find a position such that some
attributes of the simplified mesh (again, candidates are
geometric error, texture stretch and deviation, scalar
attributes) are optimized. Other strategies simply pick
the position between the removed vertices or just one
of the original positions of the removed vertices, which
is the one that we chose for the following reason: if we
would not choose one of the existing vertices, new pa-
rameter space values needed to be calculated for the
new position (e.g. by a linear combination of exist-
ing parameter space values). Since these values were
not guaranteed to lie on the trimming curves any more,
the normals of adjacent surfaces - computed from the
parameter space values - could vary significantly, re-
sulting in visual artefacts.

5.3. Cost Function

Since the main target of our system are models created
with CAD systems which typically have neither texture in-
formation nor color, we base the cost function on an approx-
imate calculation of the geometric error only. The mathe-
matically correct approach would be to compute the Haus-
dorff distance [16], which describes the distance between
two sets of points, but unfortunately this operation is very
time consuming even if approximating sampling strategies
are employed.

Another approach which would provide very tight er-
ror bounds is described by Klein et al. [16], who compute
the one-sided Hausdorff distance between the original and
the simplified mesh. Since computing the collapse-costs al-
ways leads to redundant computations which are unavoid-
able (one needs to compute for every vertex the costs for
every adjacent edge, but only the minimum of these costs is
assigned to the vertex), their method would increase the run-
time of our algorithm too much, since every of their compu-
tations is already relatively slow. In order to still compute
tight error bounds for the resulting meshes, we decided to
split the cost computation into two different parts which to-
gether provide a close, upper bound of the real cost which
can be computed a lot faster:

• After each edge-collapse operation, we compute – for
every vertex in the 1-ring of the simplified edge – the
one-sided Hausdorff distanced between the original
and the current Seam Graph as described by [16].



• For each edgee, we compute the errorε that would be
introduced to the current mesh by collapsinge.

The combination ofd andε provides an upper bound for
the geometric error between the original mesh and the mesh
after the simplification step. Since it provides an over-
estimation, edges might be chosen in a slightly wrong order.

In order to taked into account for the computation of
the costs for edges, we store - for every vertex in the 1-
ring of the simplified edge - the maximum distance that was
computed for any edge adjacent to it. If such a vertex stored
a maximum error before, we simply choose the bigger one
of the existing and the new maximum error.

Our error measure forε is described by the example in
figure 6. In this case, wheree is collapsed intov2, the dis-
tancesd1, d2 and d3 are computed as the minimum dis-
tances betweenv1 and the edges (v2, v3), (v2, v4) and (v2,
v5) respectively. The maximum of these distances describes
the geometric error when collapsinge into v2 (we denote
this directed collapse byv1 → v2 to distinguish it from the
opposite operationv2 → v1, wheree is collapsed intov1).

To finally decide, into which vertex the edgee should be
collapsed, we have to combined andε in the following way:
we first calculate the cost ofv1 → v2 and add the maximum
error that was stored withv1 (to account for previous modi-
fications of the mesh), then we compute the cost ofv2 → v1

and add the maximum error stored withv2. The minimum
of these costs and the according direction of the collapse are
assigned toe.

Figure 6. Computation of the error measure

We are aware of two potential problems of our approach:
first, since our error measure, the one-sided Hausdorff dis-
tance, is not symmetric, it might lead to bad results in spe-
cial cases but our experience proved it a reasonable choice
for all models we tested. Second, the geometric error of the
trimming curves not necessarily provides an upper bound
of the geometric error of the patch interior. For models
that feature these problems, one could compare the bound-
ing box of the trimming curve to be simplified against the
bounding box of the associated patch and increase the col-
lapse cost substantially if their extents vary significantly.
Since the models we tested never lead to any such prob-
lems since they consist of NURBS surfaces of low degree,
we omitted this test in our implementation.

Figure 7. An edge-collapse operation in the
Seam Graph

5.4. Simplification step

Before the first simplification step can take place, we
compute the costs for all edges as described above and store
them into a heap sorted on the edges’ collapse costs. For ev-
ery simplification step, the edgee with lowest cost and all
edges from its neighborhood are removed from the heap (in
this case, we define the neighborhood of an edge as those
edges that are incident in any vertex of the 1-ring of one of
the vertices ofe). Figure 7 visualizes the following steps
(in figure 7, upper case letters denote BoundaryParts, ver-
tices of special interest are assigned names starting with v,
the other character-number combinations describe positions
in the BoundaryPart’s vertex list - e.g.e3 means thatvp is
part of BoundaryPartE and occupies position 3 in E’s ver-
tex list). Here,e is supposed to be collapsed into vertexv2.
We create a new vertexvn which is an exact copy ofv2 and
replacev2 with vn. v1 is removed from the mesh, all edges
(v1, v) are redirected tovn if v2 was not connected tov al-
ready.v1 is deactivated in all BoundaryPart instances it was
part of (in this case,v1 was stored in position 2 in Bound-
aryPartA, in position 4 in BoundaryPartC and in position 3
in BoundaryPart D). Sincevn gets linked to vertexvp now,
it becomes part of BoundaryPart A, where it is placed in
position 2 - the one previously occupied byv1. We denote
such a simplification step by (v1, v2 → vn).

After this, we compute the distance between the original
edges and the ones edges incident invn as described in sec-
tion 5.3. For the vertex split hierarchy, we store the current
simplification error as the maximum of the simplification
error before the step and the error inferred by the current
step. Next, we recompute the collapse costs for edges in the
neighborhood ofvn (here, neighborhood describes all edges
that are incident in vertices adjacent tovn). These costs are
reinserted into the cost heap and the single simplification
step is finished. Please note, that a subsequent simplifica-
tion of edge (vn, vp) would remove patchE from the Seam
Graph. This way, we can achieve tessellations of simplified



models with less triangles than the number of patches of the
original model.

Our simplification algorithm stops, if no further edges
can be collapsed, which is the case when just a single vertex
per connected part of the model remains.

For progressive representation, we store the edge-
collapse information (for every edge-collapse operation, we
store the participating vertices - the two ones that vanish and
the new vertex - and the current geometric error).

5.5. Adjusting the view-dependent Level of Detail

When selecting an appropriate LOD for the Seam Graph,
two operations need to be implemented:

• a refinement operation that takes as input the collapse
information for a simplification step (v1, v2 → vn) and
performs a vertex-split (vn → v1, v2). The operation
replacesvn by v2, reinsertsv1 at its original position,
redirects edges originally incident tov1 (v2) to v1 (v2)
and reinserts edges into the mesh if they were removed
before. The result of the operation is the original con-
figuration as before the step took place,

• the simplification operation as described above, but
once the progressive LOD hierarchy is created, it needs
not store any more information or generate new ver-
tices.

Unfortunately, the simplification steps described in the
previous section are partially dependent on each other. De-
tails on this dependence can be found in [31], [11], [3] and
[14]. All four publications describe different schemes to
encode the partial order among the simplification steps but
since the numbering scheme of El-Sana et al. [3] is effi-
cient in terms of storage and rather simple to implement,
we decided to employ it in our work. This scheme works
by assigning each vertex of the mesh a number: vertices
of the original mesh withm vertices are assigned distinct
natural numbers from1 to m, vertices created by a simplifi-
cation step are numbered in order of creation (m+1, m+2,
...). For each vertexv that participated in an edge collapse
operation (either (v, v2 → vn) or (v1, v → vn) ), we store
the number of its child (in case of a simplification step (v1,
v2 → vn), we call vn the child of v1 and v2, v1 and v2

are called the parents ofvn). Given this scheme, an edge
collapse (v1, v2 → vn) can be performed if all vertices ad-
jacent to eitherv1 or v2 have numbers smaller or equal to
m (and thus represent vertices from the original mesh) or
if the numbers of the children of the adjacent vertices are
smaller than the number ofvn. A vertex split (vn → v1, v2)
can be performed if all vertices adjacent tovn are assigned
a number smaller than that ofvn. In cases where this split
should be performed but is not possible, vertices adjacent to
vn with bigger numbers thanvn need to be split.

Every published research result on view-dependent LOD
realizes the selection of the current LOD in a similar man-
ner:

• a set of active vertices is maintained, whereas a vertex
is denoted active, if it is displayed in the current frame

• for every frame, the vertices in the set are checked,
whether they should be refined or collapsed, based on
some view-dependent criteria

A more detailed description can be found in e.g. [11],
the view-dependent criteria we use are described in section
6.1. The set of active vertices is initially the set of vertices
remaining after the last simplification step and is updated
after each vertex-split and each edge-collapse. Whenever a
vertex is supposed to be split but the vertex-split operation
is disallowed due to the dependencies mentioned above, we
recursively force all adjacent vertices disallowing the oper-
ation to be split, until it can be performed.

6. Rendering of the NURBS model

Since the adaptive triangulation of a patch guaranteeing
a certain geometric error is the most time consuming part of
our algorithm, we balance the number of newly tesselated
patches between consecutive frames. Note, that the change
of the LOD in the Seam Graph requires significantly less
time, because the parameter space triangulation of the ad-
jacent patches does not change if no trimming loop appears
or vanishes, however, for large models this needs to be bal-
anced as well.

6.1. LOD selection

Prior to selecting the view-dependent LOD, we need to
calculate an upper boundε for the geometric error per patch.
Since the triangulation is already very time consuming, we
assume a fixed error over the patch to avoid further increases
in complexity. In order to compute this error, we first deter-
mine the pointp on the patch’s bounding box which is clos-
est to the eye-pointe and calculate the distanced = ‖p−e‖.
If d is smaller than the length of the diagonal of the bound-
ing box, a better approximation is calculated using the dis-
tance to the nearest vertex of the tesselated patch. We now
compute the errorε such that an edge of lengthε at dis-
tanced from e projects to at most half a pixel on the screen.
We requiredε to be no less than ten percent of the sewing
error to restrict the maximum triangles per patch. These
error bounds are passed to the Seam Graph which selects
the LOD for the trimming curves in such a way, that the
geometric error assigned to the trimming curves is always
smaller than the acceptable geometric errors of the adjacent
patches.



6.2. Culling

Since our algorithm keeps the patches as separate ob-
jects, we can easily employ standard culling techniques [23]
on the patches, thereby reducing the number of triangles
sent to the graphics pipeline. We implemented two differ-
ent culling techniques: view-frustum and backface culling.

The view frustum culling approach is straightforward
and works by testing the bounding box of each patch against
the current view frustum, which is defined by the four sides
of a semi-infinite pyramid.

The back-face culling algorithm is based on the normal-
cone approach [28]. For each patch, a cone is determined
such that all normals of the patch lie within this cone. Our
implementation computes such a cone per patch using the
normals of the vertices of the finest possible tesselation. In
order to conservatively determine the visibility of the whole
patch, we test, whether every corner of the bounding box is
facing backwards using the normal cone, in which case the
whole patch is facing backwards and thus can be culled.

6.3. Triangulation with LOD

First the trimmed NURBS patch is subdivided by a
binary-tree based on a maximal approximation error de-
pending on the current level of detail. The patch is sub-
divided at the point of maximum distance to the bilinear
approximation to achieve fast convergence. Note, that in
contrast to the quad-tree for the extraction of the poly-lines,
the approximation error has not to be divided by three, in or-
der to guarantee the approximation error along the trimming
curves, which further reduces the number of triangles com-
pared to the adaptive algorithm in the preprocessing step.

The next step is the trimming with the sewn poly-lines
in parameter space and the triangulation of the trimmed
binary-tree cells. The poly-lines are simplified in 3D space,
however, there is no simplification in parameter space to
prevent overlapping trimming curves. To avoid T-vertices,
the 3D position at an intersection of a sewing poly-line with
the border of a binary-tree cell is not interpolated between
the start and end of the line segment, but the nearest neigh-
bor is chosen instead.

Finally the parameter vertices are converted to 3D space
and the normals are calculated. In the inner region of the
patch these values are directly calculated using the B-Spline
tensor product surface. In the same manner information like
texture coordinates or the curvature and its derivates can be
exactly calculated, which would enhance methods similar
to [29]. Along the trimming curves the 3D coordinates are
taken directly from the simplified poly-line. To achieve con-
tinuous normals, derivates or texture coordinates between
two patches every Boundary Vertex stores its parameter co-
ordinates in adjacent patches.

6.4. Load balancing

Load balancing is achieved by restricting the number of
tesselated and updated patches per frame. Since every tes-
sellation has a valid range between the maximum error of
the current binary-tree leafs (εmin) and the minimum error
of their parents (εmax), a patch only needs to be tesselated if
its desired error lies outside this range. During adjustment
of the LOD in the Seam Graph a vertex split or edge col-
lapse is only allowed, if the total number of updated patches
is below a given maximum. After the LOD adjustment of
the Seam Graph, the patches are recursively chosen for tes-
sellation by the weight functionw:

w =

 (εmin/ε)2, ε < εmin

ε/εmax, ε ≥ εmax

0, else

Since this function equals zero or is larger than one, we
extent the weight to update culled patches only if calcula-
tion time is left tow′:

w′ =
{

w, patch visible
1− 1/w, patch culled

Tessellation is stopped if the new patch would increase
the number of tesselated triangles above a given threshold
or if all patches have a weight of zero and thus require no
retriangulation.

7. Results

We tested our algorithm with several trimmed NURBS
models on a 1.8 GHz Pentium 4 with 512 MB memory. We
managed to triangulate about 25,000 parameter space tri-
angles per second and were able to update about 250,000
parameter space triangles with new 3D coordinates. As
a result we chose as update restrictions (see section 6)
1,000 new and 10,000 updated parameter space triangles
per frame. If the visible error in pixels (εvis) exceeds one,
the number of new triangles is modified to be1, 000 ∗ εvis

reducing the error at the cost of lower frame rates.
Table 1 gives an overview of the computation results of

the three models. The first model consists of the two wheel
rims from the car, whereas the second model consists of the
half body from the car. The third model is the assembled
complete car including lights, wheels and plastic parts. All
models were sewn with an approximation error of 0.2 mm
resulting in a maximum LOD of 0.02 mm.

Our algorithm allocates between 33.8 and 47.1 Bytes per
vertex at maximum LOD for the tested datasets. This mem-
ory requirement consists of approx. 320 Bytes per boundary
edge, approx. 2200 Bytes per trimmed NURBS patch (con-
trol points and knot vectors), 12 Bytes per visible triangle



wheel rims car body comp. car
NURBS patches 302 1,620 8,036
Bézier patches 3,702 1,753 17,736
avg. fps 0.108 0.228 0.023
memory 3.7 MB 5.1 MB 12.5 MB

(a) results using OpenGL NURBS

wheel rims car body comp. car
triangles 380,379 637,370 3,618,822
vertices 251,128 462,784 2.514.315
memory 15.6 MB 27.3 MB 151.9 MB

(b) results using non-manifold multi-resolution meshes [4]

wheel rims car body comp. car
preprocessing 43 sec 136 sec 436 sec
bound. edges 22,879 55,986 278,170
max. triangles 17,672 10,848 49,556
min. fps 9.901 4.167 2.123
avg. fps 29.733 15.830 8.293
max. err. (pixel) 1.567 1.678 3.730
memory 8.1 MB 20.8 MB 103.1 MB

(c) results using our algorithm

Table 1. Overview of computation results on
a 1.8 GHz Pentium 4 with 512 MByte memory

and 24 Bytes per visible vertex. Note, that the non-manifold
multi-resolution data structure of Floriani et al. [4] needs
61.8 to 65.2 Bytes per vertex (including vertex normals).

On large models like the complete car, less than 1.5 per-
cent of the triangles at global maximum LOD are visible
using our algorithm. The frame rates are interactive even at
the slowest frame and the maximum visible error is accept-
able, because it is removed within the next few frames (see
figure 8b). By comparing figure 8c with 8d, the tradeoff be-
tween error and frame rate is visible. Note, that the peak
at around frame 380 results from the sudden emergence of
many, previously invisible patches.

Figure 9 shows screenshots of our program demonstrat-
ing the effect of culling and view-dependent level of detail.
Note the culling of back-facing patches and the decreasing
quality of the approximation towards the front of the car –
away from the viewer. A video presentation of our visual-
ization algorithm is available at http://cg.cs.uni-bonn.de/
project-pages/opensg-plus/videos.

8. Conclusion and future work

In this paper, we presented a novel approach to rendering
trimmed NURBS surfaces by employing LOD techniques
for both the trimming curves and the surfaces. We showed

(a) trimmed NURBS model (b) triangle statistics

(c) visible error (d) frame rates

Figure 8. Rendering of the complete car
model

(a) actual view

(b) side view of calculated triangulation

Figure 9. Screenshots

that our method can render complex models at interactive
frame rates on a standard PC, resulting in high quality ren-
derings. As an addition to the flexibility of the process, we
introduced a data structure that can handle models of arbi-



trary topology. We expect this data structure to be useful in
different applications as well.

As a future work we plan to parallelize the algorithm in
order to achieve higher frame rates as well as the use of oc-
clusion culling for further reduction of rendered triangles.
Our algorithm will be expanded to handle textures and dis-
play features like curvature and curvature extrema. We will
also integrate different triangulation algorithms like subdi-
vision surfaces and finite elements. Further on we will ex-
plore the possibilities of our algorithm in the field of out of
core simplification.
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