Automatic Generation of Structural Building Descriptions from 3D Point Cloud Scans
GRAPP 2014 – Paper ID 54

Sebastian Ochmann
ochmann@cs.uni-bonn.de
University of Bonn, Germany

January 6th, 2014
Introduction
Strong trend in architecture towards *Building Information Modeling* (BIM) for planning, facility management, and retrofitting purposes.

- In addition to geometry also includes *meta data* and entity *relations*.
- BIM models not readily available for *older* buildings, still desirable, e.g. for renovation planning.

Image from http://www.digital210king.org/
Strong trend in architecture towards *Building Information Modeling* (BIM) for planning, facility management, and retrofitting purposes.

- In addition to geometry also includes *meta data* and entity *relations*.

- BIM models not readily available for *older* buildings, still desirable, e.g. for renovation planning.

Image from http://www.digital210king.org/
Strong trend in architecture towards *Building Information Modeling* (BIM) for planning, facility management, and retrofitting purposes.

- In addition to geometry also includes *meta data* and entity *relations*.
- BIM models not readily available for *older* buildings, still desirable, e.g. for renovation planning.

Increasing availability and usage of laser scans as a starting point/guide for BIM generation.

- Point clouds lack structure, making BIM generation a highly manual, time-consuming process.
- *Automatic methods* for structural and semantic analysis of point clouds are essential.

Increasing availability and usage of laser scans as a starting point/guide for BIM generation.

- Point clouds lack structure, making BIM generation a highly manual, time-consuming process.
- *Automatic methods* for structural and semantic analysis of point clouds are essential.
Increasing availability and usage of laser scans as a starting point/guide for BIM generation.

- Point clouds lack structure, making BIM generation a highly manual, time-consuming process.
- *Automatic methods* for structural and semantic analysis of point clouds are essential.

Image from http://www.digital210king.org/
This paper presents an approach for *room segmentation* and *opening detection* from indoor point clouds.

- Facilitates navigation within and handling of point clouds, enables highlighting/hiding of individual rooms.
- Automatic placement of doors, approximation of room areas.
- Enables retrieval of room constellations (graph queries).

Partial scan of Kronborg castle (Denmark); room segmentation and detected connections between rooms are shown.
This paper presents an approach for *room segmentation* and *opening detection* from indoor point clouds.

- Facilitates navigation within and handling of point clouds, enables highlighting/hiding of individual rooms.
- Automatic placement of doors, approximation of room areas.
- Enables retrieval of room constellations (graph queries).

Partial scan of Kronborg castle (Denmark); room segmentation and detected connections between rooms are shown.
This paper presents an approach for room segmentation and opening detection from indoor point clouds.

- Facilitates navigation within and handling of point clouds, enables highlighting/hiding of individual rooms.
- Automatic placement of doors, approximation of room areas.
- Enables retrieval of room constellations (graph queries).

Partial scan of Kronborg castle (Denmark); room segmentation and detected connections between rooms are shown.
This paper presents an approach for *room segmentation* and *opening detection* from indoor point clouds.

- Facilitates navigation within and handling of point clouds, enables highlighting/hiding of individual rooms.
- Automatic placement of doors, approximation of room areas.
- Enables retrieval of room constellations (graph queries).

Partial scan of Kronborg castle (Denmark); room segmentation and detected connections between rooms are shown.
Related Work
Turner and Zakhor: Floor Plan Generation and Room Labeling of Indoor Environments from Laser Range Data (GRAPP 2014 – yesterday)

- Generation of triangulated floor plan from 2D or 3D point cloud.
- Room labeling formulated as graph-cut problem.
- Generation of 2.5D, watertight models with room segmentation.

N.B.: This paper is not included in the related work of our paper as it was published after submission deadline.
Mura et al.: Robust Reconstruction of Interior Building Structures with Multiple Rooms under Clutter and Occlusions (CAD/Graphics, November 2013)

- Generation of 2D cell complex from wall candidates.
- Diffusion embedding of 2D cell complex for clustering rooms.

N.B.: This paper is not included in the related work of our paper as it was published after submission deadline.
Room Segmentation
First goal: Segmentation of point cloud into rooms.
Starting point: Multiple separate, registered point cloud scans, including scanner positions.

Idea: Use point-to-scanner assignments as initial, coarse “guess” for room segmentation.
Idea: Resolve incorrect labelings by determining which room labels are most visible from a certain point.

E.g., a “red” point inside of the “green” room is likely to be part of the green room because it “sees” mostly green points.
Note on initial “point-to-scan” labeling:
Scans belonging to the same room need to be *merged*.

Currently done manually; automatic merging suggestions may be given (see paper).
Note on visibility measure between points
Detect planar structures1 with (smoothed) occupancy bitmaps.

1Schnabel et al.: Efficient RANSAC for Point-Cloud Shape Detection (2007).
Estimate visibility (value in $[0, 1]$) between two points by testing for intersections with the planes.
Let $v_j(x_k)$ be an “average” visibility from point k to all points currently assigned to room j (see paper for details).
Formulation of relabeling as probabilistic clustering problem.
Formulation of relabeling as probabilistic clustering problem.
Formulation of relabeling as probabilistic clustering problem.

\[p(\omega_j | x_k) = \]
Formulation of relabeling as probabilistic clustering problem.

\[p(\omega_j) := \frac{|\text{points of room } j|}{|\text{all points}|} \]

Room prior (governed by "room size")
Formulation of relabeling as probabilistic clustering problem.

\[
p(x_k | \omega_1, \sigma) := \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{(1 - v_j(x_k))^2}{2\sigma^2} \right)
\]
Formulation of relabeling as probabilistic clustering problem.

\[p(\omega_j | x_k) = \frac{p(x_k | \omega_j) p(\omega_j)}{\sum_{j'=1}^{m} p(x_k | \omega_{j'}) p(\omega_{j'})} \]
Example for iterative relabeling procedure.

Iteration 0/7 (initial situation)
Example for iterative relabeling procedure.

Iteration 1/7
Example for iterative relabeling procedure.
Example for iterative relabeling procedure.

Iteration 3/7
Example for iterative relabeling procedure.

Iteration 4/7
Example for iterative relabeling procedure.

Iteration 5/7
Example for iterative relabeling procedure.

Iteration 6/7
Example for iterative relabeling procedure.
Door Detection
Second goal: Find openings (e.g. doors) between adjacent rooms; construct *room connectivity graph*, e.g. for enabling retrieval.
Observation: Openings cause *overlaps* between scans.
The relabeling process has just resolved these overlaps.
Extract scanner-to-point rays corresponding to *relabeled* points.
Determine intersection points of rays with detected planes.
Extract pairs of intersection points to approximate openings.
Results & Conclusion
5 scans of Kronborg castle, Denmark.
5 scans of Kronborg castle, Denmark.
6 scans of Kronborg castle, Denmark.
6 scans of Kronborg castle, Denmark.
14 scans of a building in Denmark.
14 scans of Oslo bispegård.
Limitations: Highly non-convex rooms cause problems.

Part of Risløkka trafikkstasjon, Oslo.
Problem:

- Assumption that (almost) all points of a room are visible from any point within that room is violated.

Possible solution (also see next slides):

- Use (possibly indirect) “reachability” instead of visibility.
- Take into account not only direct line-of-sight but also indirect connections, allowing to “see around corners”.
Problem:

• Assumption that (almost) all points of a room are visible from any point within that room is violated.

Possible solution (also see next slides):

• Use (possibly indirect) “reachability” instead of visibility.

• Take into account not only direct line-of-sight but also indirect connections, allowing to “see around corners”.
Future Work
Improved room segmentation, also works on non-convex datasets.
Note: Opening detection is not restricted to doors.
Note: Opening detection is not restricted to doors.
ACKNOWLEDGEMENTS

We would like to thank Henrik Leander Evers for the scans of Kronborg Castle, Denmark, and the Faculty of Architecture and Landscape Sciences of Leibniz University Hannover for providing the 3D building models that were used for generating the synthetic data. This work was partially funded by the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 600908 (DURAAArk) 2013-2016