




Fig. 14. Browsing PCA shape space. Columns show the mean shape
(center) deformed according to the principal mode of variation (PC1)
synthesized for different standard deviations s1. Color coded is defor-
mation strength perpendicular to the surface where blue/red indicates
shrinkage/expansion. Note that reformation and PCA synthesis are ap-
plied simultaneously, while only the latter is color coded. (a) Reformed
anatomy, (b) original anatomy, (c) alternate view on original anatomy.

At the beginning of the session likelihood volumes as in Fig. 9 were
shown as overview. Even though not being accustomed to this kind
of visualization, the expert could directly relate to it, and discovered
an interesting correlation at the three rear processes in PC2, closely
related to the dietary signal. While the overview does not inform on
the direction of the observed correlation, this becomes apparent when
displaying streamlines as in Fig. 7. Noteworthy, the expert recognized
candidate regions for morphological modules [27, 20], delineated by
areas of different flow characteristics in tangential variation. This is a
promising insight that awaits further investigation.

5.3 Datasets and pre-processing
Preprocessing of both CT ensembles consisted of an automatic seg-
mentation, separating skull and mandibles [46], followed by a cus-
tom group wise image registration based on intensity-based similarity
alignment [25] and symmetric log-domain diffeomorphic demons [43]
resulting in velocity fields and a template image. All images were re-
sampled to 2002 � 400 isotropic voxels.

The rodent mandible dataset is compiled from 48 specimen in order
to investigate and compare influence of diet and phylogeny (on a genus
level) on mandible shape. To alleviate a bias due to different number
of samples in the phylogenetic groups, one representative mandible
is considered per genus, averaged over all of its specimens. Left and
right mandible of each specimen were averaged in advance to remove
asymmetric effects. Eventually, 16 representatives are analyzed, 8 om-
nivorous and 8 carnivorous. The closest omni- and carnivore relatives
supply 8 diet/genus pairs. The skull ensemble consists of 22 specimens
of the species Apodemus flavicollis, sampled throughout Europe.

6 DISCUSSION

Limitations. Two main limitations of the presented approach arise
with respect to scalability and representation of discontinuous map-
pings. Sec. 4.3 shows that our current implementation stays interactive
when combining up to 15 velocity fields during integration. The fac-
tor limiting GPU performance here are the number of texture lookups

involved. To circumvent this bottleneck, additional strategies are re-
quired; for instance based on a multi-pass approach or sets of pre-
computed sums. GPU memory can become another limiting factor in
the view of large population studies that cover several hundred indi-
viduals. However, thanks to smoothness of velocity fields and lower
dynamic range compared to displacements, downsampling in resolu-
tion and quantization can be effectively applied to reduce memory
consumption. In our experiments velocity fields were reduced from
2002 � 400 at 32-bit (183MB/field) to 1002 � 200 at 8-bit (6MB/field)
without significant loss in quality. Still, further investigation of opti-
mal interpolation schemes for downsampling and additional compres-
sion methods is appropriate. For compression it should be possible
to exploit the fact that most of the ensemble variance is concentrated
on a few principal modes, irregardless of sample size. A limitation
inherent to the SVF approach is that it can not model discontinuous
mappings nor changes in topology. For that purpose a combination of
our approach with the discontinuity maps of Correa et al. [16] seems a
promising endeavor.

Future directions. The presented work provides a starting point
for interactive analysis of shape variation in presence of large deforma-
tions. So far the focus was on efficient synthesis of deformed images
and the shown visualizations are prototypical and can be improved in
many regards. Subject to future work are custom-tailored adaptions
that guide the user to deformations of interest and convey specific lo-
cal aspects of variability. A related issue in this regard is to assess
model quality. To this end it is planned to enhance the presented visu-
alizations to explicitly take registration uncertainty into account. For
instance, the streamline visualization could help to uncover tangential
drift that indicates a suboptimal group wise registration result [17].
Another aspect not considered in this work is that variation occurs at
different scales. In this regard it would be interesting to see our meth-
ods extended to the hierarchical polyaffine model of Seiler et. al [36].
Due to the complexity inherent in such a hierarchy, interactive displays
of variability at multiple scales provide an ideal exploration vehicle.

For group browsing an efficient computation of group averages has
been devised. It is yet unclear how this procedure can be generalized
to also estimate group covariances on the fly; that would allow to in-
teractively browse complete PCA spaces of each and every group.

We also see potential applications of our work beyond shape anal-
ysis. For instance, image registration algorithms could be moni-
tored during runtime using our fast image warping method, enabling
debug visualizations for parameter tuning in the spirit of Registra-
tionShop [38], adding diffeomorphisms to its class of transformations.
Concerning 3D modeling it would be interesting to see if the easy
and efficient modeling of weighted local rotations, used in our refor-
mation technique, does provide benefits for interactive editing of 3D
volumes [14, 8] and meshes [45].

7 CONCLUSION

In this work we presented an efficient algorithm for 3D image warping
in a GPU raycaster, applied to visualize statistical deformation models,
based on the theory of stationary velocity fields. Albeit simple in im-
plementation, it improves visual quality significantly compared to pre-
vious work, that relies on a linear model of displacements and a heuris-
tic algorithm for image warping. In our approach, image warping is
naturally combined with a non-linear deformation model of diffeo-
morphisms, linearized in log-domain via SVFs. We showed that this
combination extends the design space for visual analysis of anatomic
variability and introduced a novel technique for targeted browsing of
subgroups of an ensemble in relation to extrinsic factors. A compara-
tive study on rodent mandibles and a population study on mouse skulls,
performed by a morphometrics expert of our team, attested the appli-
cability of the presented methods.
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