
Supplementary Document on Moment Shadow Mapping

Christoph Peters∗

University of Bonn, Germany
Reinhard Klein†

University of Bonn, Germany

In this supplementary document we provide information relevant
to those who want to build upon our work. This includes tech-
nical details on the evaluation of candidate techniques, descrip-
tions of Hausdorff 4MSM and TMSM, a lot of mathematical back-
ground and HLSL code listings for Hamburger 4MSM and Haus-
dorff 4MSM. A still more detailed discussion of most results can be
found in [Peters 2013].

The document is to be understood as appendix of the paper. It is not
self-contained and includes many direct references to the paper.

Contents

6 Details on the Choice of Shadow Map Data 1

7 Moment Problems 2
7.1 The Hamburger Moment Problem 2
7.2 The Hausdorff Moment Problem 3
7.3 Moment Problems in Degenerate Cases 4
7.4 The Trigonometric Moment Problem 4

8 Additional Notes on Moment Quantization 6

9 Translation and Scale Invariance 7

10 Code Listings 7

Additional Acknowledgments 7

6 Details on the Choice of Shadow Map Data

In the paper we describe a fully automated method to measure the
performance of shadow mapping techniques and apply it to tech-
niques based upon Algorithm 1. We have yet to provide some de-
tails needed for reproduction of our results.

The evaluated candidate techniques use all possible combinations
of shadow map data generated by 37 different depth-dependent
scalar functions. A complete list of these functions follows:

• Polynomials: z1, . . . , z8

• Roots:
√
z, 3
√
z, 4
√
z

• Rational functions: 1
(z+1)1

, . . . , 1
(z+1)4

• Scaled exponential functions: exp(1 · z), . . . , exp(4 · z)

• Shifted logarithm functions: log(z + 1), . . . , log(z + 4)

• Fourier basis functions: sin(1 · 2 · π · z), . . . , sin(4 · 2 · π · z),
cos(1 · 2 · π · z), . . . , cos(4 · 2 · π · z)

∗peters@cs.uni-bonn.de
†rk@cs.uni-bonn.de

Figure 9: All shadow maps used for evaluation of candidate tech-
niques in the fully automated setup. Their resolution is 10242.

• Trigonometric functions: cosh(z), sinh(z), arcsin(z),
arcsin(2 · z − 1), arctan(z)

• A Gaussian probability density function: exp(−z2)

The resulting techniques are evaluated on three different scenes us-
ing a total of four different light directions. The corresponding
shadow maps are shown in Figure 9. Evaluation requires a full stack
of shadow maps showing not only the foremost surface but all sur-
faces. Due to memory restrictions we will provide these images on
the project webpage or on request.

The evaluation is sensitive to the biasing of percentage closer fil-
tering, which provides the ground truth. If the ground truth con-
tains wrong self-shadowing, the evaluated error term punishes tech-
niques for not reproducing this artifact. Therefore, our evaluation
uses an optimized biasing derived from the slope of the surface with
respect to the light. Percentage closer filtering and all candidate
techniques use the same biasing. You will find a stack of images
containing the values of this bias on the project webpage.

As an optimization we have used a slightly more sophisticated vari-
ant of Algorithm 1 than presented in the paper. We first run it using
251 uniform samples of [0, 1]. Then we refine the sampling near
support points of the output distribution to enable a more precise
positioning of these support points and rerun Algorithm 1 with the
refined sampling. This is done iteratively. In total Algorithm 1
is invoked three times. It should be noted that the remaining dis-
cretization error is large enough to impact the ranking of candidate
techniques. Still, the conclusion that many techniques are close to
the optimum and that Hamburger four moment shadow mapping is
among them remains valid.

The histogram in Figure 4 uses an average of the results for all
shadow maps in Figure 9 weighted by the number of fragments in
the stack of shadow maps. The qualitative behavior is similar on
all three scenes. The scores of each candidate technique for each
shadow map can be found in the supplementary data.

It should also be noted that the x-axis of the histogram is cut off
for the sake of readability. A few outlier techniques perform very
poorly. For example choosing

b(z) = (sin(4πz), cos(4πz), sin(8πz), cos(8πz))T

produces the largest measured error of 29.6%. This poor perfor-
mance is due to symmetries in this choice of data. Any moment
vector can be explained using solely depth values greater than 3

4
and thus the computed lower bound is always zero up to this point.

7 Moment Problems

Algorithm 2 can be used as black box. Still, it can be beneficial to
understand its inner workings. This has aided us in the derivation
of algorithms that are well-suited for real-time applications and can
help in finding future applications of the powerful theory of mo-
ments.

In the present section we provide proof for all corresponding propo-
sitions in the paper and we describe Hausdorff moment shadow
mapping and trigonometric moment shadow mapping. For state-
ments on existence and uniqueness of solutions we generally ref-
erence the literature but provide self-contained proofs for the more
algorithmic aspects of the theory.

The paper claims that the Hamburger moment problem is always
solved by a linear combination of m

2
+ 1 Dirac-δ distributions. In

a more general formulation many moment problems can be solved
by canonical representations [Kreı̆n and Nudel’man 1977, p. 35, p.
77].
Definition 7. Let m ∈ N be even, let I := [α, β] ⊂ R and let
b : I → Rm with b(z) := (zj)mj=1. Let w1, . . . , wn > 0, let
z1, . . . , zn ∈ I be pairwise different and let

Z :=

n∑
i=1

wi · δzi ∈ P(I).

We call

ε(Z) :=
n∑
i=1

{
1 if zi ∈ {α, β}
2 if zi ∈ (α, β)

the index of Z. For distributions Z ∈ P(R) the index is the number
of support points multiplied by two. If b = EZ(b) and ε(Z) ≤
m+ 2, we refer to Z as canonical representation of b.

The importance of canonical representations stems from the follow-
ing proposition which is a formulation of the Markov-Krein theo-
rem (also known as Chebyshev-Markov inequality).
Proposition 8 (Markov-Krein theorem). Let b ∈ Rm such that
S(b) is non-empty. Then S(b) either contains exactly one canon-
ical representation S ∈ S(b) and for this distribution ε(S) ≤ m
or S(b) contains a unique canonical representation S ∈ S(b)
with support at any given zf ∈ (α, β). In both cases G(b, zf) =
FS(zf).

Proof. In the case where S(b) contains exactly one distribution,
the claim ε(S) ≤ m follows from [Kreı̆n and Nudel’man 1977, p.
78, Theorem III.4.1] and G(b, zf) = FS(zf) is trivial.

Otherwise, the existence of a unique canonical representation S ∈
S(b) with support at zf ∈ I follows from [Kreı̆n and Nudel’man

1977, p. 58, Theorem III.1.1] and [Kreı̆n and Nudel’man 1977,
p. 79, Theorem III.4.3]. The equality G(b, zf) = FS(zf) fol-
lows from the Markov-Krein theorem [Kreı̆n and Nudel’man 1977,
p.125, Theorem IV.3.1].

Proposition 8 tells us that Problem 1 for b(z) := (zj)mj=1 on I is
always solved by canonical representations. The degrees of free-
dom of canonical representations coincide with their index which
is at most m+2. On the other hand, we have m+2 constraints; S
must have support at zf if ε(S) > m, ES(b) = b and S(I) = 1.
The remaining problem is entirely algebraic. We need to find the
unique S matching the constraints.

7.1 The Hamburger Moment Problem

We now consider Problem 1 for I = R and b(z) := (zj)mj=1

which is known as Hamburger moment problem due to Hans Lud-
wig Hamburger. The matrix B defined in Algorithm 2 is essential
for our discussion. It may be written as

B =

1 b1 · · · bm

2

b1 . .
.

. .
. ...

... . .
.

. .
.

bm−1

bm
2
· · · bm−1 bm

 ∈ Rn×n

where n := m
2
+1. Its skew-diagonals are constant which makes it

a Hankel matrix. According to Proposition 4 positive semi-definite
B is a necessary condition for a Z ∈ S(b) to exist. For Algorithm
2 to be correct, this also has to be a sufficient criterion with a few
exceptions. This is indeed the case.
Proposition 9. Let B be positive definite, zf ∈ R and

c := B−1 · (1, zf , . . . , zn−1
f)T.

If cn 6= 0, there exists a unique canonical representation S ∈ S(b)
with support at zf and exactly n− 1 other points.

Proof. The proposition follows directly from [Akhiezer and Kreı̆n
1962, p. 8, Theorem 3 c)].

In the case cn = 0 there is no single distribution realizing the in-
fimum G(b, zf) but a series of distributions approximating it. The
infimum can still be computed but since the problem occurs only
for isolated values of zf (cn is a non-constant polynomial in zf)
and does not occur at all for the Hausdorff moment problem, we
disregard this case.

Now we provide the reasoning behind Step 5 of Algorithm 2.
Equivalent results are used in [Tari 2005, p. 14].
Proposition 10. Let z1, . . . , zn ∈ R be pairwise different, let w ∈
Rn and let S :=

∑n
i=1 wi · δzi ∈ S(b). LetB be a regular Hankel

matrix. Then for all i ∈ {2, . . . , n}

(z0i , . . . , z
n−1
i) ·B−1 · (z01 , . . . , zn−1

1)T = 0. (1)

Furthermore, for all i ∈ {1, . . . , n}

wi =
1

(z0i , . . . , z
n−1
i) ·B−1 · (z0i , . . . , z

n−1
i)T

and these values are positive if B is positive-definite.

Proof. We introduce the function

b̂ : R → Rn

z 7→ (zj−1)nj=1.

2

This way our claim is equivalent to b̂T(zi) · B−1 · b̂(z1) = 0.
Furthermore, we consider the matrix Â from Algorithm 2 which
can be written as

Â := (b̂(z1), . . . , b̂(zn)) ∈ Rn×n.

This matrix is a square Vandermonde matrix and since z1, . . . , zn
are pairwise different, it is invertible. We can also use b̂ to express
B. Using

b̂(z) · b̂T(z) = (zj−1 · zk−1)nj,k=1 = (zj+k−2)nj,k=1

we obtain B = ES(b̂ · b̂T) and thus:

Â−1 ·B · Â−T = Â−1 · ES
(
b̂ · b̂T

)
· Â−T

= Â−1 ·

(
n∑
i=1

wi · b̂(zi) · b̂T(zi)

)
· Â−T

=

n∑
i=1

wi ·
(
Â−1 · b̂(zi)

)
·
(
Â−1 · b̂(zi)

)T
=

n∑
i=1

wi · ei · eTi = diag(w1, . . . , wn)

The inverse of this diagonal matrix ÂT ·B−1 · Â is still a diagonal
matrix and therefore the entry i, 1 is zero for i ∈ {2, . . . , n}. This
entry coincides with b̂T(zi) ·B−1 · b̂(z1). Also, entry i, i is

1

wi
= b̂T(zi) ·B−1 · b̂(zi)

for all i ∈ {1, . . . , n}. The positivity of wi is then trivial for
positive-definite B.

With these propositions the correctness proof for Algorithm 2 is
easily provided.

Proof of Proposition 3. By Proposition 9 there exists a distribution
S ∈ S(b) with support at z1 = zf and exactly n − 1 other points
z2, . . . , zn. By Proposition 10 the points z2, . . . , zn have to be
roots of Equation (1). Thus, Algorithm 2 computes these points
correctly.

Let w ∈ Rn such that S =
∑n
i=1 wi · δzi . The system of linear

equations Â · w = (1, b1, . . . , bn−1)
T is equivalent to

n∑
i=1

wi = 1, ∀j ∈ {1, . . . , n− 1} :
n∑
i=1

wi · zji = bj .

Obviously, both equations hold if S ∈ S(b). Furthermore, the sys-
tem of linear equations uniquely determines w because Â is invert-
ible (see proof of Proposition 10). Thus, Algorithm 2 computes w
correctly. By Proposition 8G(b, zf) = FS(zf) and thus Algorithm
2 returns the correct value.

It remains to prove that cn = 0 cannot occur for more than n − 1
different values of zf if a regularB is fixed. Obviously, cn is a poly-
nomial of degree n− 1 in zf . Suppose this polynomial is constant
zero. Then the bottom row of B−1 · Â is all zero. Contradiction.
Thus, cn as function of zf can have at most n− 1 roots.

7.2 The Hausdorff Moment Problem

For the Hausdorff moment problem (named after Felix Hausdorff)
we need to distinguish two cases. The first case governs the be-
havior of the solution in most practical cases and is no different
from the Hamburger moment problem. It occurs if the Hamburger
moment problem has a solution which has all of its support within
[0, 1]. Only if this is not the case, special treatment is necessary.

If such a solution does not exist although B is positive-definite,
the solution to the problem must have more than m

2
+ 1 points of

support. By Proposition 8 we know that the solution is a canonical
representation and therefore the additional support can only lie at α
and β. More precisely, the distribution must have support at α, β
and m

2
other points.

We now restrict our considerations to the case m = 4 which allows
for a particularly simple solution.
Proposition 11. Let m = n = 4 and let z1 := 0, z2 := z ∈ [0, 1],
z3 := zf ∈ [0, 1] and z4 := 1 such that z1, z2, z3, z4 are pairwise
different. Let w ∈ Rn such that S :=

∑n
i=1 wi · δzi ∈ S(b). Then

z =
(b3 − b2) · zf + b3 − b4
(b2 − b1) · zf + b2 − b3

. (2)

Proof. We use A and b as in Algorithm 1, i.e.

A := (zj−1
i)j∈{1,...,5},i∈{1,...,4} ∈ R5×4, b =

(
1
b

)
.

Then

S ∈ S(b) ⇒ A · w = b ⇒ det(A | b) = 0.

Hence, we are now interested in roots of the following determinant
with respect to z:

det(A | b) = det

1 1 1 1 1
0 z zf 1 b1
0 z2 z2f 1 b2
0 z3 z3f 1 b3
0 z4 z4f 1 b4

Obviously, two identical columns arise for z = 0, z = zf and
z = 1 as well as zf = 0 and zf = 1. However, z and zf cannot
realize any of these roots because 0, z, zf , 1 are pairwise different.
We perform polynomial division to eliminate them:

0 =
det(A | b)

z · (z − zf) · (z − 1) · zf · (1− zf)
=((b2 − b1) · zf + b2 − b3) · z + (b2 − b3) · zf + b4 − b3

Solving for z yields the claimed expression.

We can now present the algorithm used for Hausdorff four moment
shadow mapping and prove its correctness.
Proposition 12. Algorithm 4 solves Problem 1 for b(z) =
(z, z2, z3, z4)T and I = [0, 1]. Furthermore, it only fails if S(b)
contains exactly one distribution or is empty.

Proof. Suppose that S(b) contains more than one distribution.
First we note that we can disregard the case zf = 0 because then
G(b, zf) = 0 is correctly computed and the case zf = 1 because
then the solution must have exactly three points of support with one
of them being zf and the first branch of the algorithm solves the
problem.

3

Algorithm 4 Solution to Problem 1 for b(z) = (z, z2, z3, z4)T and
I = [0, 1] (Hausdorff 4MSM).
Input: b ∈ R4, zf ∈ [0, 1]
Output: G(b, zf)

1. B := (bj+k−2)
3
j,k=1 ∈ R3×3 (with b0 := 1)

2. If B is not positive-definite: Indicate failure and abort
3. z1 := zf
4. c := B−1 · (1, z1, z21)T ∈ R3

5. Solve c3 · z2 + c2 · z + c1 = 0 for z. If exactly two distinct
solutions z2, z3 ∈ [0, 1] exist:

(a) Â := (zj−1
i)3j,i=1 ∈ R3×3

(b) w := Â−1 · (1, b1, b2)T ∈ R3

(c) Return G :=
∑3
i=1,zi<zf

wi
6. Else:

(a) z :=
(b3−b2)·zf+b3−b4
(b2−b1)·zf+b2−b3

(b) z1 := 0, z2 := z, z3 := zf , z4 := 1

(c) Â := (zj−1
i)4j,i=1 ∈ R4×4

(d) w = Â−1 · (1, b1, b2, b3)T
(e) Return G :=

∑4
i=1,zi<zf

wi

By Proposition 8 there exists a unique canonical representation S ∈
S(b) with support at zf and ε(S) ∈ {5, 6}. If this distribution has
exactly three points of support, the correct G(b, zf) is returned in
Step 5c by Proposition 3.

If S has four points of support, let w ∈ R4 and z1, . . . , z4 ∈ [0, 1]

such that S =
∑4
i=1 wi · δzi ∈ S(b). Due to ε(S) ≤ 6 we

know that {0, 1} ⊂ {z1, . . . , z4}. By Proposition 11 Algorithm 4
computes the last remaining point of support z correctly.

Then z ∈ [0, 1] and the algorithm cannot have returned in Step 5c
because otherwise the unique S would have three points of support
(note that the weights generated by Step 5b have to be positive due
to Proposition 10). As in the proof of Proposition 3 w is uniquely
determined by Â · w = (1, b1, b2, b3)

T and thus Algorithm 4 com-
putes it correctly. Then the correct G(b, zf) is returned in Step
6e.

Algorithm 4 is slightly slower than Algorithm 2 but also computes
a slightly sharper bound by including the knowledge that valid so-
lutions have all their support in the interval [0, 1]. In practice, this
leads to a darkening of shadows cast over very short ranges. Ad-
ditionally, it has the advantage that the failure case for cn = 0 is
removed.

However, there is also a drawback when 16-bit quantization is used.
Quantization artifacts mostly effect shadows cast over a very short
range. With Algorithm 4 these artifacts tend to be stronger than
with Algorithm 2. Therefore, we believe that Hamburger four mo-
ment shadow mapping is overall preferable.

7.3 Moment Problems in Degenerate Cases

In both presented algorithms we have not handled the case where
B is not positive-definite. Our reasoning for this design decision in
the paper builds upon Proposition 4.

Proof of Proposition 4. The matrix B is symmetric by definition.
To see that it is also positive semi-definite we take an arbitrary vec-
tor u ∈ Rn and reuse the representation of B through b̂ from the

proof of Proposition 10:

uT ·B · u = uT · EZ(b̂ · b̂T) · u = EZ(uT · b̂ · b̂T · u)

= EZ((uT · b̂)2) ≥ 0

“1. ⇒ 3.”: Let detB = 0. Then we can choose a c ∈ kerB with
c 6= 0. In analogy to the previous computation we obtain:

0 = cT ·B · c = EZ((cT · b̂)2)

The expression cT · b̂ is a polynomial of degree n − 1 = m
2

and
thus it can have no more than m

2
roots. Z must have all of its

support at these roots because although (cT · b̂)2 is never negative
the expectation EZ((cT · b̂)2) vanishes.

“3. ⇒ 1.”: Let z1, . . . , zm
2
∈ R and w ∈ R

m
2 such that Z =∑m

2
i=1 wi · δzi . Then

B = EZ(b̂ · b̂T) =

m
2∑
i=1

wi · b̂(zi) · b̂T(zi).

Each of the matrices b̂(zi) · b̂T(zi) has rank one. Thus, B cannot
have rank greater than m

2
, i.e. it is singular.

“1. ⇒ 2.”: For c as above the roots of cT · b̂ uniquely determine at
most m

2
possible locations for the points of support ofZ. Forming a

square Vandermonde matrix from the distinct roots we can uniquely
determine the weights to be used at these roots. Thus Z ∈ S(b) is
unique.

“2. ⇒ 1.”: Suppose detB 6= 0. Then B is positive definite and
Algorithm 2 can produce multiple different distributions in S(b).
Contradiction.

The proof of this Proposition immediately induces an algorithm for
perfect reconstruction in the degenerate case as stated in the paper.
The vector c 6= 0 has to be chosen in the kernel of B. The roots of
cT · b̂ become the points of support of the constructed distribution
and the weights can be computed in the usual way. While this is an
effective algorithm, its small field of application to nothing but the
perfectly singular case makes it useless for the present problem.

7.4 The Trigonometric Moment Problem

The trigonometric moment problem is of interest to us due to its
excellent error in the automated evaluation. To see how well it per-
forms in practice a closed-form solution is needed. For the sake of
this paper we have developed such a solution.

The difficulty in doing so is that the Markov-Krein theorem does
not apply. Using notions of Krein the theorem applies to functions
b inducingM+-systems [Kreı̆n and Nudel’man 1977, p. 125]. This
means that the function

c0 +
m′∑
j=1

cj · bj

must never have more than m′ roots for all m′ ∈ {0, . . . ,m} and
non-zero choices of c0, . . . , cm′ . Obviously, this holds for polyno-
mials, that is b(z) = (zj)mj=1. However, for

b(z) := (cos(1·2πz), sin(1·2πz), . . . , cos(m·2πz), sin(m·2πz))

4

such functions can have 2 ·
⌈
m′

2

⌉
roots. Whenever a cosine is added

the number of possible roots increases by two. For example, cos(1 ·
2πz) has two roots on [0, 1), not one. Therefore, the Markov-Krein
theorem cannot be applied.

Experiments with Algorithm 1 reveal that solutions do indeed have
a different structure. A full proof of this structure is beyond the
scope of the present work and our derivation of the solution to the
trigonometric moment problem is not rigorous. Still, the presented
closed-form produces results which agree with those of Algorithm
1 in all tested cases.

Although they do not solve the problem immediately, canonical rep-
resentations still play a crucial role. Once more they can be con-
structed by means of a special matrix. To define it we switch to a
complex setting interpreting the pair cos(j · 2πz), sin(j · 2πz) as
complex number exp(i · j · 2πz) ∈ C. Besides, it is convenient to
augment b with a constant function and to use zero-based indices.
The Hankel matrix is replaced by a so-called Toeplitz matrix.
Definition 13. Let

b : [0, 1) → Cm+1

z 7→ (exp(i · j · 2πz))mj=0.

Let Z ∈ P([0, 1)) be a distribution. Then we refer to b := EZ(b)
as moment vector and to

B := EZ(b · b∗)

as associated Toeplitz matrix (b∗ denotes the conjugate transpose).
This matrix has constant diagonals and is Hermitian. Its entries can
be written as

Bj,k =

{
bk−j if k ≥ j
bj−k if k < j.

The Toeplitz matrix behaves much like the Hankel matrix. For ex-
ample, it is positive semi-definite.
Proposition 14. B is positive semi-definite.

Proof. For all u ∈ Cm:

u∗ ·B · u = u∗ · EZ(b · b∗) · u = EZ(u∗ · b · b∗ · u)

= EZ(u∗ · b · (u∗ · b)) = EZ(|u∗ · b|2) ≥ 0

It can also be used to test for existence of canonical representations
with prescribed points of support.
Proposition 15. Let B ∈ C(m+1)×(m+1) be positive-definite and
let zf ∈ [0, 1). Then there exists exactly one canonical representa-
tion S ∈ S(b) with support at zf .

Proof. See [Kreı̆n and Nudel’man 1977, p. 149, Theorem IV.8.3].

Furthermore, the Toeplitz matrix allows for computation of canon-
ical representations in much the same way as in Algorithm 2.
Proposition 16. Let z0, . . . , zm ∈ [0, 1) be pairwise different, let
w ∈ Rm+1 and let S :=

∑m
l=0 wl · δzl ∈ S(b). Let B be positive-

definite. Then for all l ∈ {1, . . . ,m}

b∗(zl) ·B−1 · b(z0) = 0.

The weights are given by

wl =
1

b∗(zl) ·B−1 · b(zl)

for all l ∈ {0, . . . ,m}.

Proof. Let

Â := (b(z0), . . . ,b(zm)) ∈ C(m+1)×(m+1).

This matrix is a Vandermonde matrix formed by exp(i ·
2πz0), . . . , exp(i · 2πzm) and as such it is invertible. We obtain:

Â−1 ·B · Â−T = Â−1 · EZ(b · bT) · Â−T

=

m∑
l=0

wl · Â−1 · b(zl) · bT(zl) · Â−T

=

m∑
l=0

wl · el · eTl = diag(w0, . . . , wm)

Now b∗(zl) · B−1 · b(z0) = 0 is an off-diagonal entry of the
diagonal matrix ÂT ·B−1 · Â. For all l ∈ {0, . . . ,m} the diagonal
entries are

1

wl
= b∗(zl) ·B−1 · b(zl).

Canonical representations help us in the solution of Problem 1 due
to the following conjecture. This conjecture has been developed
based upon observations on the output of Algorithm 1. We believe
that one of the proof techniques which serves to prove the Markov-
Krein theorem can also be transferred to this conjecture but do not
present such a proof here.
Conjecture 17. Let zf ∈ [0, 1] and let B be positive-definite.
There exists a w3 with

0 ≤ w3 ≤
1

b∗(1) ·B−1 · b(1)

such that b − w3 · b(1) admits a canonical representation S ∈
S(b−w3 ·b(1)) with support at zf and S+w3 ·δ1 solves Problem
1, i.e. G(b, zf) = FS+w3·δ1(zf).

This means that distributions solving the trigonometric moment
problem can always have support at one in addition to the support
provided by a canonical representation. This behavior is intuitive
in the sense that one is no different from zf . It bounds the interval
where the support has to be optimized.

The remaining problem is an optimization problem where a closed-
form solution is challenging. We have to find w3 minimizing
FS+w3·δ1(zf) with S depending upon w3. We have been unable
to find a solution for arbitrary m, but we have found a solution for
m = 2 which is the choice discussed in the paper.

In this case, S has 3 points of support with one of them being zf .
Let

0 ≤ z0 < z1 < 1, z2 := zf , z3 := 1, w0, w1, w2 > 0

such that S =
∑3
l=0 wl · δzl is the sought-after canonical represen-

tation of b− w3 · b(1). The size we need to minimize is

FS+w3·δ1(zf) =

3∑
l=0, zi<zf

wl =

0 if zf ≤ z0
w0 if z0 < zf ≤ z1
w0 + w1 if z1 < zf .

5

The case zf ≤ z0 is trivial. A more difficult case arises when w0

and w1 both contribute, i.e. z1 < zf . In this case

FS+w3·δ1(zf) = 1− w2 − w3

=1− 1

b(zf)∗ · (B − w3 · b(1) · b∗(1))−1 · b(zf)
− w3. (3)

The most problematic part of this expression is the inverse matrix.
Fortunately, this term can be simplified. It is a linear combination
of no more than two different matrices which do not depend upon
w3. More precisely:

(B − w3 · b(1) · b∗(1))−1

=B−1 +
w3 ·B−1 · b(1) · b∗(1) ·B−1

1− w3 · b∗(1) ·B−1 · b(1) (4)

This can be verified directly by taking the product of the matrix and
its claimed inverse.

Substitution into Equation (3) yields:

FS+w3·δ1(zf)

=1− 1

b(zf)∗ ·B−1 · b(zf) + w3 ·
|b(zf)∗·B−1·b(1)|2

1−w3·b∗(1)·B−1·b(1)

− w3

Now the dependence of this term uponw3 is simple enough to com-
pute critical points. We obtain two solutions for w3:

±
∣∣b∗(1) ·B−1 · b(zf)

∣∣− b∗(zf) ·B−1 · b(zf)
|b∗(1) ·B−1 · b(zf)|2 − b∗(1) ·B−1 · b(1) · b∗(zf) ·B−1 · b(zf)

It remains to treat the case z0 < zf ≤ z1, i.e. FS+w3·δ1(zf) = w0.
To this end, we ask for the value of w0 as function of the unknown
z0. We note that S+w3 ·δ1−w0 ·δz0 is a canonical representation
of b− w0 · b(z0). Then Proposition 16 implies

b∗(zf) · (B − w0 · b∗(z0) · b(z0))−1 · b(1) = 0.

Equation 4 applies analogously to this case and we obtain:

b∗(zf) ·
(
B−1 +

w0 ·B−1 · b(z0) · b∗(z0) ·B−1

1− w0 · b∗(z0) ·B−1 · b(z0)

)
· b(1) = 0

Solving for w0 yields Equation (5) in Table 1 (it is too lengthy to fit
into a single column). Now we can consider the partial derivative

∂

∂z0

1

w0

and look for critical points. The corresponding equation depends
upon exp(−2 · 2πz0), . . . , exp(2 · 2πz0). Substituting x0 ∈ C for
exp(2πz0) and multiplying by x20 we obtain a quartic equation in
x0. Its roots can be computed in closed-form. Once z0 is known,
w0 can be computed from Equation (5) and the remaining points of
support can be constructed as canonical representation.

Thus, we are now able to compute the optimal distribution in all
relevant cases. The only thing that remains to be done is to distin-
guish between these cases. We have found that this can be done by
considering the canonical representation having support at one. Its
three points of support partition [0, 1] into three intervals. On the
first oneG(b, zf) is zero, on the second one it isw0 and on the third
one it is 1− w2 − w3.

8 Additional Notes on Moment Quantization

The paper demonstrates that the proposed quantization for four mo-
ment shadow mapping increases entropy of the stored data by 12.3
bits. Proposition 6 is crucial for this result because it states the
differential entropy of the transformed random variable.

Proof of Proposition 6. The function

pθm(b) : Rm → R≥0

b′ 7→ pb(θ
−1
m (b′))

|det θm|

is the probability density function of θm◦xb because for all random
variables x on Rm:

Eθm◦xb(x) = Exb(x ◦ θm) =

∫
Rm

x(θm(b)) · pb(b) d b

=

∫
Rm

x(b′) · pb(θ−1
m (b′)) · | det θ−1

m |d b′

=

∫
Rm

x(b′) · pθm(b)(b
′) d b′

Using pθm(b) we can compute the differential entropy of θm ◦ xb:

h(θm ◦ xb) = −
∫
Rm

pb(θ
−1
m (b′))

| det θm|
· log2

pb(θ
−1
m (b′))

| det θm|
d b′

= −
∫
Rm

pb(b) · (log2 pb(b)− log2 | det θm|) d b

= h(xb) + log2 | det θm|

The optimized moment quantization exploits the fact that all valid
moment vectors are convex combinations of vectors generated by
b, i.e. they lie in convb([0, 1]). Canonical quantization wastes
memory on encoding this fact separately for every single texel.
More precisely:
Proposition 18. If xb is a random variable on R ⊂ Rm,

h(xb) ≤ log2 volR.

Proof. Without loss of generality pb(b) 6= 0 for all b ∈ R. Other-
wise we replaceR byR∩p−1

b (R+) and obtain a sharper bound. By
Jensen’s inequality the following holds [Cover and Thomas 2001,
p. 25]:

h(xb) = Exb (− log2 pb) = Exb

(
log2

1

pb

)
≤ log2 Exb

(
1

pb

)
= log2

(∫
R

pb(b)

pb(b)
d b

)
= log2 volR

Knowing the volume of convb([0, 1]) allows for a quantitative
statement on the amount of entropy h(xb) that is wasted by canon-
ical quantization.
Proposition 19. For m ∈ N and b(z) = (zj)mj=1

vol convb([0, 1]) =

m∏
j=1

((j − 1)!)2

(2 · j − 1)!
.

6

w0 =
b∗(zf) ·B−1 · b(1)

b∗(zf) ·B−1 · b(1) · b∗(z0) ·B−1 · b(z0)− b∗(zf) ·B−1 · b(z0) · b∗(z0) ·B−1 · b(1) (5)

Table 1: The formula for the weight at the first point of support as function of the location of this point.

Proof. An outline of the proof can be found in [Karlin and Shapley
1953, p. 51, Theorem 15.2].

Combining both leads to h(xb) ≤ −14.6 for m = 4, i.e. canon-
ical 16-bit quantization uses at most 49.4 of the available 64 bits
efficiently. The other 14.6 bits are wasted on encoding the fact
that b ∈ convb([0, 1]). The transform θm improves on this situa-
tion by expanding conv θm ◦b and only 2.3 bits of wasted entropy
remain. Unless our optimization has failed to find the global maxi-
mum affine linear transforms cannot produce a better result.

9 Translation and Scale Invariance

In the paper we have claimed that users need not worry about choos-
ing the near and far planes of the shadow map tightly if they use
Hamburger MSM (disregarding quantization artifacts). Even more
interestingly this property is unique for Hamburger MSM.

This statement comes from the observation that the information
conveyed by a choice of b is characterized by the function space
spanned by its component functions among with the constant one
function. The shadow map provides us with b = EZ(b) and we
certainly know EZ(1) = 1. For a different choice b̃ spanning the
same function space every component function can be written as
linear combination of the component functions of b among with
the constant one function. The same linear combinations serve to
transform b and 1 into EZ(b̃).

Changing the near and far plane of the shadow map is equivalent
to scaling and shifting the domain of depth values. To achieve that
this does not affect the information held by the shadow map, b has
to be chosen such that the corresponding function space is invariant
under scaling and shifting. This is achieved by polynomials and
nothing else:
Proposition 20. Let V be a finite-dimensional vector space of
smooth functions f : R → R. V is the vector space of all polyno-
mials up to degree dimV − 1 if and only if the function

z 7→ f(x · z + y)

is still in V for all f ∈ V and all x, y ∈ R.

Proof. “⇒” If f is a polynomial of degree dimV − 1,

z 7→ f(x · z + y)

is still a polynomial of degree dimV − 1 for all x, y ∈ R.

“⇐” Let z 7→ f(x · z + y) ∈ V for all f ∈ V and x, y ∈ R. Since
f ∈ V is smooth we can consider its derivative at z ∈ R:

f ′(z) = lim
h→0

f(z + h)− f(z)
h

The function z 7→ f(z+h) is still in V and so is the entire quotient.
Then the limit f ′ is also in V because V is a finite-dimensional, real
vector space. Thus, the differential is an endomorphism on V

d : V → V
f 7→ f ′.

Now let λ ∈ C be an eigenvalue of d for the eigenvector f ∈
V \ {0}, i.e. d f = λ · f . Then we know for all x, y, z ∈ R

λ · f(x · z + y) = d f(x · z + y) = λ · x · f(x · z + y).

It follows that λ = λ · x and thus λ = 0.

Therefore, d has solely vanishing eigenvalues, i.e. it is nilpotent
on V . In particular, ddimV V = {0}. This can only be true if all
functions in V are polynomials of degree dimV − 1 or less. Then
for dimensionality reasons, V has to be the unique vector space
containing all these polynomials.

10 Code Listings

Implementing four moment shadow mapping requires little modi-
fication of existing renderers using shadow mapping especially if
another technique using filterable shadow maps is implemented al-
ready. The procedure consists of two major steps. First the shadow
map is generated. The output color of the pixel shader should be
computed using Listing 1.

Once the shadow map has been generated linear filtering may be
applied, e.g. a two-pass Gaussian blur, generation of mipmaps or a
resolve operation for shadow maps with multisample antialiasing.
In the latter case a worthwhile optimization is to use Listing 1 dur-
ing the resolve [Lauritzen et al. 2011]. This way, the multisampled
shadow map requires only a depth channel and bandwidth require-
ments are reduced. Though, our implementation does not make use
of this optimization.

In the second step fragments in the scene are shaded using the pro-
vided moment shadow map. Listing 2 demonstrates how to obtain
a common moment vector from the moment shadow map with opti-
mized quantization. This vector can then be passed to the function
in Listing 3 or Listing 4 to obtain the shadow intensity for a frag-
ment using Hamburger 4MSM or Hausdorff 4MSM, respectively.
The code for Hausdorff 4MSM adds an additional branch to the al-
gorithm. This darkens short-range shadows slightly at the cost of a
minor increase in run time.

Additional Acknowledgments

We would like to thank Sebastian Merzbach, Oliver Burghard and
Jonathan Klein for proofreading and helpful feedback. Further-
more, we thank the BlendSwap.com users Greg Zaal, Chris Kuhn,
Oscar Baechler, Paulo Bardes and Zuck as well as the operators of
the Stanford 3D scanning repository for providing additional mod-
els used in the demo, the evaluation and the supplementary video.

References

AKHIEZER, N. I., AND KREĬN, M. G. 1962. Some Questions in
the Theory of Moments, vol. 2 of Translations of Mathematical
Monographs. American Mathematical Society.

COVER, T. M., AND THOMAS, J. A. 2001. Elements of Informa-
tion Theory. John Wiley & Sons, Inc.

KARLIN, S., AND SHAPLEY, L. S. 1953. Geometry of moment
spaces. Memoirs of the American Mathematical Society, 12.

7

http://www.blendswap.com/
http://www.blendswap.com/user/gregzaal
http://www.blendswap.com/user/ogbog
http://www.blendswap.com/user/Bardes
http://www.blendswap.com/user/zuck
http://graphics.stanford.edu/data/3Dscanrep/

Listing 1: An HLSL function constructing a vector which encodes four moments in a way that is optimized for little
information loss during quantization. It should be used to construct a four moment shadow map.
Out4MomentsOptimized is set to a vector where every entry lies between zero and one. It should be the output of
the pixel shader generating the four moment shadow map.
FragmentDepth is the linear depth in shadow map space of the fragment that is currently being rendered to the
moment shadow map. It is supposed to lie between zero and one.

1 vo id Get4MomentsOptimized (o u t f l o a t 4 Out4MomentsOptimized , f l o a t FragmentDepth) {
2 f l o a t Square=FragmentDepth*FragmentDepth ;
3 f l o a t 4 Moments= f l o a t 4 (FragmentDepth ,Square ,Square*FragmentDepth ,Square*Square) ;
4 Out4MomentsOptimized=mul (Moments , f l o a t 4 x 4 (
5 −2.07224649f , 13 .7948857237f , 0 .105877704f , 9 .7924062118f ,
6 32 .23703778f , −59.4683975703f , −1.9077466311f ,−33.7652110555f ,
7 −68.571074599f , 82 .0359750338f , 9 .3496555107f , 47 .9456096605f ,
8 39.3703274134f ,−35.364903257f , −6.6543490743f ,−23.9728048165f)) ;
9 Out4MomentsOptimized [0]+=0 .035955884801f ;

10 }

Listing 2: An HLSL function sampling a moment vector from a four moment shadow map with optimized quantization.
Out4Moments is set to the vector of moments. It starts with the first moment and ends with the fourth.
ShadowMapSampler is the sampler to be used. It is recommended to use anisotropic filtering.
Optimized4MomentShadowMap is the four-channel texture containing the moment vectors with optimized quan-
tization. Typically, this is a render target whose pixel values originate from the function in Listing 1. It should use a
format with 16 bit unsigned integers mapped to the interval from zero to one.
ShadowMapTexCoord is the texture coordinate at which the sample should be taken. Typically, this is the texture
coordinate in the shadow map of a fragment that is to be shaded.

1 vo id SampleOptimized4MomentShadowMap (o u t f l o a t 4 Out4Moments ,
2 SamplerState ShadowMapSampler , Texture2D Optimized4MomentShadowMap ,
3 f l o a t 2 ShadowMapTexCoord)
4 {
5 f l o a t 4 _4MomentsOptimized=Optimized4MomentShadowMap .Sample (
6 ShadowMapSampler ,ShadowMapTexCoord
7) ;
8 _4MomentsOptimized[0]−=0.035955884801f ;
9 Out4Moments=mul (_4MomentsOptimized ,

10 f l o a t 4 x 4 (0 .2227744146f , 0 .1549679261f , 0 .1451988946f , 0 .163127443f ,
11 0.0771972861f , 0 . 1 3 9 4 6 2 9 4 2 6f , 0 . 2 1 2 0 2 0 2 1 5 7f , 0 . 2 5 9 1 4 3 2 2 6 6f ,
12 0.7926986636f , 0 .7963415838f , 0 .7258694464f , 0 .6539092497f ,
13 0.0319417555f ,−0.1722823173f ,−0.2758014811f ,−0.3376131734f)) ;
14 }

8

Listing 3: An implementation of Hamburger 4MSM (Algorithm 3) in HLSL.
OutShadowIntensity is set to the computed shadow intensity (one for fully shadowed areas).
_4Moments is the moment vector obtained using Listing 2.
FragmentDepth is the depth in shadow map space of the fragment that is to be shaded.
DepthBias is a small positive constant used to avoid wrong self-shadowing.
MomentBias is a small positive constant (e.g. 3 · 10−5) used to compensate quantization errors (see Section 4.2).

1 vo id GetHamburger4MSMShadowIntensity (o u t f l o a t OutShadowIntensity ,
2 f l o a t 4 _4Moments , f l o a t FragmentDepth , f l o a t DepthBias , f l o a t MomentBias)
3 {
4 / / B i a s i n p u t d a t a t o a v o i d a r t i f a c t s
5 f l o a t 4 b= l e r p (_4Moments , f l o a t 4 (0 . 5f , 0 . 5 f , 0 . 5 f , 0 . 5 f) ,MomentBias) ;
6 f l o a t 3 z ;
7 z [0] =FragmentDepth−DepthBias ;
8 / / Compute a Cholesky f a c t o r i z a t i o n o f t h e Hankel m a t r i x B s t o r i n g on ly non−
9 / / t r i v i a l e n t r i e s o r r e l a t e d p r o d u c t s

10 f l o a t L32D22=mad(−b [0] ,b [1] ,b [2]) ;
11 f l o a t D22=mad(−b [0] ,b [0] ,b [1]) ;
12 f l o a t SquaredDepthVariance=mad(−b [1] ,b [1] ,b [3]) ;
13 f l o a t D33D22= d o t (f l o a t 2 (SquaredDepthVariance,−L32D22) , f l o a t 2 (D22 ,L32D22)) ;
14 f l o a t InvD22=1.0f /D22 ;
15 f l o a t L32=L32D22*InvD22 ;
16 / / Ob t a i n a s c a l e d i n v e r s e image of bz = (1 , z [0] , z [0] * z [0]) ^T
17 f l o a t 3 c= f l o a t 3 (1 . 0f ,z [0] ,z [0] *z [0]) ;
18 / / Forward s u b s t i t u t i o n t o s o l v e L* c1=bz
19 c[1]−=b .x ;
20 c[2]−=b .y+L32*c [1] ;
21 / / S c a l i n g t o s o l v e D* c2=c1
22 c [1] * =InvD22 ;
23 c [2] * =D22 /D33D22 ;
24 / / Backward s u b s t i t u t i o n t o s o l v e L^T* c3=c2
25 c[1]−=L32*c [2] ;
26 c[0]−= d o t (c .yz ,b .xy) ;
27 / / So lve t h e q u a d r a t i c e q u a t i o n c [0] + c [1] * z+c [2] * z ^2 t o o b t a i n s o l u t i o n s z [1]
28 / / and z [2]
29 f l o a t p=c [1] / c [2] ;
30 f l o a t q=c [0] / c [2] ;
31 f l o a t D= ((p*p) / 4 . 0f)−q ;
32 f l o a t r= s q r t (D) ;
33 z[1]=−(p / 2 . 0f)−r ;
34 z[2]=−(p / 2 . 0f) +r ;
35 / / C o n s t r u c t a s o l u t i o n composed of t h r e e Dirac−d e l t a s and e v a l u a t e i t s CDF
36 f l o a t 4 Swi tch =
37 (z [2] <z [0]) ? f l o a t 4 (z [1] ,z [0] , 1 . 0f , 1 . 0 f) : (
38 (z [1] <z [0]) ? f l o a t 4 (z [0] ,z [1] , 0 . 0f , 1 . 0 f) :
39 f l o a t 4 (0 . 0f , 0 . 0 f , 0 . 0 f , 0 . 0 f)) ;
40 f l o a t Quotient=(Swi tch [0] *z[2]−b [0] * (Swi tch [0] +z [2]) +b [1])
41 / ((z[2]− Swi tch [1]) * (z[0]−z [1])) ;
42 OutShadowIntensity= s a t u r a t e (Swi tch [2] + Swi tch [3] *Quotient) ;
43 }

9

Listing 4: An implementation of Hausdorff 4MSM (Algorithm 4) in HLSL. Parameters are the same as in Listing 3.
1 vo id GetHausdorff4MSMShadowIntensity (o u t f l o a t OutShadowIntensity ,
2 f l o a t 4 _4Moments , f l o a t FragmentDepth , f l o a t DepthBias , f l o a t MomentBias)
3 {
4 / / B i a s i n p u t d a t a t o a v o i d a r t i f a c t s
5 f l o a t 4 b= l e r p (_4Moments , f l o a t 4 (0 . 5f , 0 . 5 f , 0 . 5 f , 0 . 5 f) ,MomentBias) ;
6 f l o a t 3 z ;
7 z [0] =FragmentDepth−DepthBias ;
8 / / Compute a Cholesky f a c t o r i z a t i o n o f t h e Hankel m a t r i x B s t o r i n g on ly non−
9 / / t r i v i a l e n t r i e s o r r e l a t e d p r o d u c t s

10 f l o a t L32D22=mad(−b [0] ,b [1] ,b [2]) ;
11 f l o a t D22=mad(−b [0] ,b [0] ,b [1]) ;
12 f l o a t SquaredDepthVariance=mad(−b [1] ,b [1] ,b [3]) ;
13 f l o a t D33D22= d o t (f l o a t 2 (SquaredDepthVariance,−L32D22) , f l o a t 2 (D22 ,L32D22)) ;
14 f l o a t InvD22=1.0f /D22 ;
15 f l o a t L32=L32D22*InvD22 ;
16 / / Ob t a i n a s c a l e d i n v e r s e image of bz = (1 , z [0] , z [0] * z [0]) ^T
17 f l o a t 3 c= f l o a t 3 (1 . 0f ,z [0] ,z [0] *z [0]) ;
18 / / Forward s u b s t i t u t i o n t o s o l v e L* c1=bz
19 c[1]−=b .x ;
20 c[2]−=b .y+L32*c [1] ;
21 / / S c a l i n g t o s o l v e D* c2=c1
22 c [1] * =InvD22 ;
23 c [2] * =D22 /D33D22 ;
24 / / Backward s u b s t i t u t i o n t o s o l v e L^T* c3=c2
25 c[1]−=L32*c [2] ;
26 c[0]−= d o t (c .yz ,b .xy) ;
27 / / So lve t h e q u a d r a t i c e q u a t i o n c [0] + c [1] * z+c [2] * z ^2 t o o b t a i n s o l u t i o n s z [1]
28 / / and z [2]
29 f l o a t p=c [1] / c [2] ;
30 f l o a t q=c [0] / c [2] ;
31 f l o a t D= ((p*p) / 4 . 0f)−q ;
32 f l o a t r= s q r t (D) ;
33 z[1]=−(p / 2 . 0f)−r ;
34 z[2]=−(p / 2 . 0f) +r ;
35 / / Use a s o l u t i o n made of f o u r d e l t a s i f t h e s o l u t i o n wi th t h r e e d e l t a s i s i n v a l i d
36 i f (z [1] < 0 . 0f | | z [2] > 1 . 0f) {
37 f l o a t zFree= ((b[2]−b [1]) *z [0] +b[2]−b [3]) / ((b[1]−b [0]) *z [0] +b[1]−b [2]) ;
38 f l o a t w1Factor=(z [0] >zFree) ? 1 . 0f : 0 . 0f ;
39 OutShadowIntensity=(b[1]−b [0] + (b[2]−b[0]−(zFree+1.0f) * (b[1]−b [0]))
40 *(zFree−w1Factor−z [0]) / (z [0] * (z[0]−zFree))) / (zFree−w1Factor) +1 .0f−b [0] ;
41 }
42 / / Use t h e s o l u t i o n wi th t h r e e d e l t a s
43 e l s e {
44 f l o a t 4 Swi tch =
45 (z [2] <z [0]) ? f l o a t 4 (z [1] ,z [0] , 1 . 0f , 1 . 0 f) : (
46 (z [1] <z [0]) ? f l o a t 4 (z [0] ,z [1] , 0 . 0f , 1 . 0 f) :
47 f l o a t 4 (0 . 0f , 0 . 0 f , 0 . 0 f , 0 . 0 f)) ;
48 f l o a t Quotient=(Swi tch [0] *z[2]−b [0] * (Swi tch [0] +z [2]) +b [1])
49 / ((z[2]− Swi tch [1]) * (z[0]−z [1])) ;
50 OutShadowIntensity= Swi tch [2] + Swi tch [3] *Quotient ;
51 }
52 OutShadowIntensity= s a t u r a t e (OutShadowIntensity) ;
53 }

10

KREĬN, M. G., AND NUDEL’MAN, A. A. 1977. The Markov Mo-
ment Problem and Extremal Problems, vol. 50 of Translations of
Mathematical Monographs. American Mathematical Society.

LAURITZEN, A., SALVI, M., AND LEFOHN, A. 2011. Sample
distribution shadow maps. In Proceedings of the 2011 ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games,
ACM, New York, NY, USA, I3D ’11, 97–102.

PETERS, C. 2013. Moment Shadow Mapping. Master’s thesis,
University of Bonn.

TARI, Á. 2005. Moments based bounds in stochastic models. Ph.d.
dissertation, Budapest University of Technology and Economics,
Department of Telecommunications.

11

