Pushpins for Edit Propagation

Mylo, Marlon
Fraunhofer FKIE
KOM Department
Fraunhoferstraße 20
53343, Wachtberg, Germany
and
University of Bonn
Institute of Computer Science II
Regina-Pacis-Weg 3
53113, Bonn, Germany
mylo@cs.uni-bonn.de

Klein, Reinhard
University of Bonn
Institute of Computer Science II
Regina-Pacis-Weg 3
53113, Bonn, Germany
rk@cs.uni-bonn.de

ABSTRACT
In this paper we present an approach for stroke-input based foreground estimation of measured materials with a near regular structure. To enable extraction of high-quality editing masks even from difficult materials, we combine a state of the art lattice-detection algorithm with a novel frequency convolution scheme, which we call pushpins. Despite being highly specialized, we consider this use-case as important for material design. A comparison with other state of the art editing and material recognition approaches will give proof of the robustness and ability of our algorithm.

Keywords
SVBRDF, Near Regular Texture, edit propagation.

1 INTRODUCTION
Measured materials are used to render 3D-scenes into images which evoke the impression of photorealism. While being able to edit those digital material representations is highly desirable for many applications, e.g. in film and advertising, manipulations are still a challenging tasks. Solving this problem may spare acquisition costs and admits to construct imaginary materials which appear as if they were real.

Editing measured materials is indivisibly tied to the process of isolating the geometrical or the radiometric regions which shall be manipulated.

While many brilliant algorithms have been published to master this classification problem, the productive use of those algorithms has to meet high demands. Small misclassifications lead to ugly artefacts in the resulting renderings and have to be corrected in tedious handcraft. The increasing quality in image segmentation and image matting is mostly based on a subtle exploitation of colour spaces and spatial continuity constraints. While those approaches do also apply for segmentation of materials, the results are often not good enough because different material components can very often not be distinguished by colour. But most digital material representations provide more than one diffuse colour channel. And many materials bear a near regular structure (NRS). In this paper we want to make use of those two facts to generate editing masks for measured materials in a quality which makes handcrafted optical debugging steps unnecessary. Our approach consists of a separated lattice detection step and and a classification by a support vector machine (SVM). The SVM-classification allows to use complex, high-dimensional descriptors whereas the lattice detection enables to construct only one model tile-mask and to propagate this mask via the detected lattice.

The technical contribution of this paper is 2-fold:

1. We provide a workchain to robustly solve the foreground estimation problem for measured materials with a NRS.
2. We introduce a convolutional technique to tag texels which have a similar environment like a given seed texel of the same material patch. This similarity recognition step alone is not reliable enough for stable lattice detection but it delivers a global similarity map which may be used to guide the indeterministic lattice detection step.

The structure of the paper is as follows: after a short section on the relevant related work (section 2), we will give an overview (section 3), which provides notations,
the problem statement and a walk-through. The algorithm is presented in section 4 and followed by the evaluation in section 5. The conclusion (section 6) closes with considerations about the possibilities to parallelize our system.

2 RELATED WORK

Editing measured opaque materials is an intensively studied field and there have been by far too many publications to give an exhaustive catalogue in this context. According to [7], interpolated reflectance data may directly be used for rendering materials. But those representations are expensive to store, lack explanatory power and are difficult to edit so there have been many approaches to fit measured reflectance data to analytical reflectance models, like [8, 16, 19, 26]. Editing those analytical representations is still not easy. Some approaches operate directly on the radiometric data like the retargeting approach of An et al. [1] or the manifold approach based on aging simulation by Wang et al. [25]. Others try to estimate a propagation map, first, to isolate the texels to edit. Pellacini and Lawrence suggested, to use some elementary statistics. Investigations of this kind are beyond the scope of this paper.

SVBRDF A spatially varying BRDF (SVBRDF) is a material where the light exchange is described by a BRDF.

Ashikhmin Shirley reflectance model The measured reflectance distributions are modelled in the way suggested by Peter Ashikhmin and Michael Shirley in 2000 [3]. This is a Phong-like model which additionally controls the eccentricity of the specular lobe and is given by:

\[
\rho(\omega_{in}, \omega_{out}) = \frac{\sqrt{(\epsilon_x+1)(\epsilon_y+1)} (\mathbf{n}, \mathbf{h}) e_x \cos \phi + e_y \sin \phi}{8\pi (\omega_{in}, \mathbf{h}) \max((\omega_{in}, \mathbf{h}), (\omega_{out}, \mathbf{h}))} \cdot (R_d + (1 - R_d) (1 - (\omega_{in}, \mathbf{h}))^5) + R_d (1 - R_d) \frac{28}{23\pi} \cdot \left(1 - \left(1 - \frac{(\omega_{in}, \mathbf{n})}{2}\right)^5\right) \left(1 - \left(1 - \frac{(\omega_{out}, \mathbf{n})}{2}\right)^5\right)
\]

for the incoming and outgoing directions \(\omega_{in}\) and \(\omega_{out}\). The vector \(\mathbf{n}\) is the surface normal, \(\mathbf{h} = (\omega_{in} + \omega_{out}) / \|\omega_{in} + \omega_{out}\|\) and \(\phi\) is the azimuth of \(\mathbf{h}\).

This model has four reflectance parameters: the wavelength dependent diffuse and specular reflectance shares \(R_d\) and \(R_s\) and the surface roughness along the \(x\)-axis \(\epsilon_x\) and the surface roughness along the \(y\)-axis \(\epsilon_y\). In the following, we will refer to \(R_d\) and \(R_s\) as the diffuse colour and the specular colour. We will assume that those colours are RGB colours and the term lightness will refer to the HSL description of the RGB-space. We assume that the parameters are stored in rectangular maps.

Being based on the Phong model, the Ashikhmin-Shirley model is neither normalized nor is the distribution function for the lobe physically normalized. An up-to-date comparison between anisotropic analytical BRDF-models and a suggestion for a model without the mentioned flaws has been published by Murat et al. [14].
3.2 Problem statement

Given an SVBRDF, where at least some of the parameter channels bear a roughly periodic pattern in the following sense: there exists a periodic pattern which may be warped into those channel maps alongside of a small continuous flow field. Here we mean by periodic pattern an image which may be generated from a model tile and a concatenation of translations and rotations according to an appropriate wallpaper group. A specification of the term small is difficult and depends not only on the settings of the algorithm but also on the texturizing of the SVBRDF, itself.

Further we assume, that a user has marked a foreground component \(F \) of the SVBRDF and a background component \(B \) by the use of a stroke input \(S_F \) for the foreground and a stroke input \(S_B \) for the background stroke. Than we want to propagate this stroke input in a way that the periodic pattern is respected and a texel with the index \(i \) and the average reflectance distribution \(\rho_i \) obtains a value \(\alpha_i \) which decomposes \(\rho_i \) into a convex combination of a foreground BRDF \(\phi \) and a background BRDF \(\psi \):

\[
\rho_i = \alpha_i \phi_i + (1 - \alpha_i) \psi_i.
\]

For the classical matting problem, the parameter \(\alpha \) is described as opacity or transparency. For our application, this interpretation is not good, as transparency leads to complicated reflectance properties. \(\alpha \) should be merely seen as area share of the foreground reflectance distribution. We will define the foreground \(F = \{ t_i | \alpha_i = 1 \} \), the background \(B = \{ t_i | \alpha_i = 0 \} \) and the boundary \(\partial = \{ t_i | 0 < \alpha_i < 1 \} \).

3.3 Walk through

In figure 1 you can see an overview of our new algorithm. As input we take a SVBRDF together with a stroke input. Then we apply in parallel a segmentation via a support vector machine (paragraph 4.1.2) on the descriptors described in paragraph 4.1.1 and estimate a lattice on the diffuse colour (paragraph 4.2). Based on the detected lattice we extract a model tile (paragraph 4.3.1), calculate an optical flow between this model tile (paragraph 4.3.2) and all other tiles and warp the tiled SVM-classification results into the model tile. This set of warped masks is used to compose an average tile-mask which is then warped into the original tile positions (paragraph 4.3.3).

4 THE ALGORITHM IN DETAIL

In this section we want to describe the algorithm in detail.
4.1 Classification

Based on the stroke input, we classify in this step all texels of the material probe, without reference to the NRS, into foreground and background texels. We tried several different descriptors and several different classifiers:

4.1.1 Descriptors

Additionally to the 8 reflectance parameters and the 2 parameters of the surface normal provided by the Ashikhmin-Shirley model (equation 1), we add the filter responses of Gabor filters. We use 8 different orientations and a wavelength of 3 texels. Gabor filters are applied to the volume-channel of the diffuse color. This strengthens the influence of line features on the classification result. We compare every texel on a patch with size 5x5 texel. So the dimension of our descriptor is altogether (8 + 2 + 8) x 5 x 5 = 450.

4.1.2 Classifier

We tried different state of the art classifiers: Support Vector Machines [6], Deep Belief Networks [10] and Convolutional Neural Networks [15]. The latter have been implemented in Theano for Python, for the SVM we used the implementation by Chang [5].

Though we made good experiences with neural networks in the past, they failed in the current scenario. According to a rule of thumb given in [18], the number of samples should be equal or more than the number of weights of the neural network. As stated in paragraph 4.1.1, the descriptor of a texel has the dimension of 450 which makes, dependent on the concrete topology, about 50,000 weights in a three layer neural network, whereas a stroke input provides between 100 and 500 samples. So the networks have simply not enough data for training. SVMs, in contrast, can be trained with a small amount of data and are easy to apply and quickly trained.

The trick of the SVM is that it estimates a decision boundary in an infinite dimensional space which makes it possible to have non-linear boundaries between clusters. By maximizing the margin between the decision boundary and the training-samples, the SVM reaches even in the linear setting better generalization than other linear classifiers. For the optimization, it is not necessary to map the data into the infinite dimensional feature space, but it is enough to calculate the inner product (so called Kernel Trick). We use radial basis functions as inner product kernels and parameter estimation is done by grid-search and 5-fold cross-validation.

In figure 2 you can see that the result of the svm classification step is already a good segmentation. Still there are some noticeable misclassifications.

4.2 Lattice detection

Our algorithm gains its strength from the combination of lattice detection and pattern-recognition. In our tests, the most successful approach to detecting lattices was the mean shift belief propagation (MSBP), published by Park et al. [20].

4.2.1 Mean Shift Belief Propagation

MSBP makes the assumption that a repeating structure in an image is a slightly deformed periodic pattern. As such it is possible to find an ideal pattern element and two linearly independent lattice base vectors to reconstruct this periodic pattern by operating via the corresponding wallpaper group [9, 17]. By clustering points of interest, MSBP estimates the base vectors for the periodic pattern and a seed point, and the algorithm extracts a characteristic tile around this seed point. The lattice base vectors define symmetry-mappings, so the seed point and all symmetry-images of this seed point may be mapped to further symmetry-images by translation along the base vectors. Those images are the vertices of the constructed lattice. As the lattice is deformed by assumption, the exact symmetry mapping has to be found by searching for a good fit for the characteristic tile in the area of the estimated new vertex position. This search is done for all new lattice-vertex candidates simultaneously, meaning that the search for two neighbouring vertices is constrained by an energy term which punishes deviation from the according base translation. Mean shift belief propagation has proven to be an extremely powerful algorithm. Still we had to struggle with two problems:

1. The results are not deterministic.
2. Regions of big distortions like the fold in the grey mesh material often stop the expansion of the lattice.

Both difficulties are illustrated in figure 3. The result of MSBP, reflected by the red lattice in the left image was successful: the algorithm found the smallest possible tile and the lattice covers the whole material patch. On the right image, we have an example for an abortive run of MSBP: you can see that the algorithm was not able to cross the fold in the material and the base vectors are the sum and the difference of the base vectors found in the right image.

We clear this problem by the use of a cross-correlation based approach we call pushpins.
4.2.2 Pushpins

To make the results of MSBP more stable and more predictable, we guide the lattice detection step by a weaker but therefore global repetition detector. The main idea is to mask the frequency spectrum of a given material \(T \) in such a way that a specific quadratic region \(\mathcal{P} \subset T \) in the spatial domain and therefore all similar regions in the spatial domain show a peak. This may be done by cross correlating \(T \) with \(P \), but simple cross correlation does not bring the desired results. Instead, we construct a patch which generates a peak when convolved with \(T \).

Masking the frequency domain in order to isolate particular features is a common technique in signal processing. Here we presumed correct scaling and frequency sampling and point wise multiplication.

For numerical reasons it is advisable to suppress high frequencies. Thus we substitute \(C \) by a gaussian filter \(\mathcal{G} \) and get:

\[
P \ast F^{-1} \left(\frac{C}{F P} \right) = \mathcal{G}_{\sigma}\
\]

for the variance \(\sigma \). Note that equation 4.2.2 becomes wrong, when \(FP \) is not continued by zeros, but by the surrounding pixels in the material. This can be circumvented by calculating \(X \) not by convolution but by deconvolution as the solution of

\[
\mathcal{G}_{\sigma}(i_0, j_0) = \mathcal{G}_{\sigma}(i_0, j_0) \\
\forall i_0, j_0 \in \text{supp}(P), n \text{ is the edge length of } P. \text{ As } n \text{ is also the edge length of } X, \text{ we have the same number of variables and equations.}
\]

We will call the solution \(X \) of equation 2 a pushpin and \(P([\frac{1}{2}], [\frac{1}{2}]) \) the puncture of the pushpin. By nailhead we mean the support of \(P \).

A pushpin, constructed in this way, does respond a bit stiff: tiles have to be very similar to the original tile to generate a detectable spike. This may be relaxed massively by using a regularization: instead of solving the equation system 2, we constrain this equation system by a spatial smoothing term namely by the minimization of the discrete laplace operator (\(\Delta \)). This leads to a minimization problem:

\[
\mathcal{G}_{\sigma}(i_0, j_0) = \mathcal{G}_{\sigma}(i_0, j_0) \\
\forall i_0, j_0 \in \text{supp}(P), n \text{ is the edge length of } P. \text{ As } n \text{ is also the edge length of } X, \text{ we have the same number of variables and equations.}
\]

\[
X = \arg\min_{X} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} W(i, j)(X(i, j) - G_{\sigma}(i, j))^{2} + || \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \Delta(i, j, k, l) W(i, j)||
\]

The effectiveness of this regularization step is illustrated in figure 4. Pushpins can be made tolerant against noise or small distortions by adding energy terms to equation system 3. And the other way round it is possible to concentrate on certain regions of the pushpin by adding weights to the corresponding equations.

In figure 5 we visualize the influence of push pins to the lattice detection process. We have made several test runs some of which had one or two nodes missing, but we obtained always the same spikes covering the whole material patch.
Figure 5: The left image shows the grey mesh material, the image in the middle depicts the filter response of a push pin applied to the volume channel of the diffuse color of the grey mesh material and the third image shows the result of MSBP on a combined map of the filter response and the diffuse channel. Now the lattice detection is extremely stable.

Figure 6: On the left side you can see in light blue the filter response of a pushpin with nailhead radius approximately equal to the size of half a small square on the right side we used a pushpin with a nailhead radius approximately equal to half a big square.

To construct a pushpin, it is necessary to determine a centerpoint and a radius. We have chosen the mean of the positions of the stroke inputs as center point and the size of the nailhead was chosen so as to cover the whole stroke.

Nested symmetry groups

Pushpins generate automatically a region of dominance. This shall be demonstrated on a simple example. In figure 6 you may see a simple texture consisting of small squares arranged in groups to bigger squares. On the left side, you can see the response of a pushpin with a nailhead diameter in the size of a small square, on the right side we used a pushpin with a nailhead diameter in the size of a big square. The clipped filter response of the smaller pushpins are held blue the filter response of the bigger pushpins is shown in yellow. You can see that the pushpin on the left side detected the crossings between the small squares whereas the pushpins on the right side detected exclusively the crossings between the big squares. This means that pushpins can distinguish between nested symmetry groups. That is an improvement against plain mean shift belief propagation because MSBP simply uses the symmetry group it gets first.

Though pushpins are not limited to a certain number of channels, particularly not to 1, we confine their use to the lightness channel of R_s or R_d. Note that the use of more channels does also lead to more noise in the filter response.

4.3 Generation of a mask

In the next step we combine the results of the classification and of the lattice detection to obtain a model mask tile and a warping field to plaster the whole material patch with this model mask patch. After cutting the mask and the material into a set of tiles which we interpret as distorted version of the same model tile, we extract a model tile, we calculate an optical flow between the model tile and all other tiles and we compose a mask for the whole material probe.

4.3.1 Finding a model tile

To generate a reliable segmentation of a single tile we first choose one tile which is everybody's friend. We assume that changes in the size of tiles are due to perspective distortion. Thus the best fit for an average tile should be a tile with maximum edge-length. So in the first step we resize all tiles to the maximum edge-length. The comparison is made on base of the L_2-norm applied to the difference of the diffuse channel of two tiles. As the number of tiles is small, we simply apply a brute force approach and compare all tiles pairwise. This procedure is quadratic in the number of tiles, so for big numbers of tiles, the time requirement may be optimized by using a dynamic programming approach. Note that generating a mean tile instead of searching the tile with the most friends is not advised as we want to calculate the optical flow between this model tile and all other tiles. This is more difficult with a mean tile because the algorithm has to find features.

4.3.2 Optical flow

For the estimation of the optical flow between the principal tile and the test tile, we use the algorithm suggested by Sun et al. [24]. For warping we use thin-plate splines [4].

4.3.3 Reconstruction

An arithmetical mean mask is calculated from the warped masks. This mean mask is warped back into the position of the original tiles.

4.4 Applying the edits

Our algorithm assigns an alpha value to every texel. This value will scarcely be exactly one or zero. So we will do a segmentation by thresholding. Aside from distortions the alpha-values may be seen as voting for the background or the foreground, so 0.5 is a good threshold. The segmentation mask is of course not suitable for editing as it will obviously lead to strong artefacts. So we will substitute all texels, which have at least one
corner-neighbour from the opposite component, by its alpha-value, so that the intuitive use of the word boundary and the definition given in section 3.2 coincide.

On the foreground component, editing can of course be done as e.g. described in the literature cited in section 2, but on the boundary it has to be taken under consideration, that for many edits it is necessary to know the exact decomposition \(\rho_i = \alpha_i \phi_i + (1 - \alpha_i) \psi_i \), which to find is an ill-posed problem.

5 Evaluation

In the evaluation section we will show that our algorithm is capable of dealing with materials, which do not show the strong colour-contrasts, which are mostly necessary for matting and foreground-segmentation purposes.

5.1 Test set-up

To describe our test set-up we will start with a detailed overview over the competing algorithms to convey an idea where those algorithms run into problems. Of course the test set-up is strongly biased into the direction of our algorithm as both algorithms, AppProp and RepSnapping are by far more general. But we did not find a more fitting approach in literature.

5.1.1 Input data

The materials we use in this paper have been acquired with an enhanced version of the linear light source reflectometer (LLSR), introduced by Gardner et al. [8]. This new system has been developed by Meseth et al. [19] and is capable of measuring anisotropic reflectance distributions.

Additionally to the reflectance properties (equation 1), LLSR has to estimate a surface normal \(\mathbf{n} \). All values have been stored as 16 bit integer values. One texel represents a surface of roughly 1/4 mm\(^2\).

We use two different materials for the comparison: the grey mesh material which we have used to demonstrate the single steps of the algorithm and a structured steel material (see figure 8).

The grey mesh material is nearly uni coloured. It is particularly difficult to derive a near regular structure because it contains a strong bulge and the material normals do not convey much information.

While it is really simple, to derive the regular structure from the structured steel material, the only visible difference between foreground and background is a slightly less isotropic distribution of the noise. The metal material does not have a diffuse colour channel so we have to use \(R_s \) instead.

5.1.2 Comparison with other algorithms

Our algorithm combines techniques from the field of material manipulation with techniques from the field of repetition finding in images. Thus for comparison we have chosen one outstanding algorithm from each of those fields. For the task of segmenting repetitions in images we decided for the RepSnapping algorithm [12], published in 2011 by Huang et al. And to cover the field of SVBRDF-editing we will compare against AppProp [2], published by An and Pellacini in 2008. Moreover, we compare those results with the segmentation of the SVM from step 4.1.

AppProp

The authors use a low rank approximation of the full appearance adjacency matrix and minimize the following functional:

\[
\sum_{i,k} w_k z_k (e_i - g_k)^2 + \lambda \sum_{i,j} z_{ij} (e_i - e_j)^2
\]

with

\[
z_{ij} := \exp\left(-||f_i - f_j||^2/\sigma_n\right) \exp\left(-||x_i - x_j||^2/\sigma_s\right).
\]

Where \(i \) and \(j \) go over all texel in the texture, \(k \) goes over all texels in the stroke input, \(w \) are weights, \(e \) is the edit and therefore the solution of the optimization problem, \(g \) is the stroke-input and therefore the right hand of the optimization problem, \(x \) is the position of the texel, \(\lambda \) the weight of the smoothing term and \(f \) is a texel-dependent appearance term. The resulting equation system is roughly solved by a low-rank approximation. The appearance comparison of AppProp is not limited to three dimensions or a single texel, so we can apply it to our descriptor (section 4.1.1).

The spatial parameter \(\sigma_s \) is not interesting in our setting, but to find a reasonable value for \(\sigma_s \) is difficult for our high dimensional descriptor and has to be done in a preprocessing step for every material separately. This is not surprising because the term

\[
\exp(-||x_i - x_j||^2/\sigma_s) = \prod_k \frac{1}{e^{(x_i^k - x_j^k)^2/\sigma_s}}
\]

consists of 450 factors in our case and has therefore the inclination to explode or to collapse beyond numerical accuracy. \(\lambda \) controls the consistency of the edit and had not much influence. We set \(\lambda \) and \(w_k \) to one. Thresholding has been done manually, in order, to get the best possible segmentation.
and RepSnapping uses a correlation based approach to descriptors, which results in this big amount of noise, Prop is numerically overcharged with the big number of results. We see the main reason in the descriptors: AppProp is, that the raw SVM delivers the second best result. The three algorithms are more successful on the grey mesh artefact-free masks for both materials (8.b). The other algorithms are more successful on the grey mesh artefact-free masks for both materials (8.b). The other algorithms are more successful on the grey mesh artefact-free masks for both materials (8.b). The other algorithms are more successful on the grey mesh artefact-free masks for both materials (8.b). The other

RepSnapping

RepSnapping has been published by Huang et al. in 2011 [12], and is based on the idea of co-segmentation [11]. It is specialized to cutting out repeated elements in natural images. The algorithm solves the energy functional:

\[E(e) := \sum_i D_i(e_i) + \sum_{i<j} V_{i,j}(e_i, e_j) \]

by the use of graph cuts [13]. Here \(D_i \) describes the probability that \(e_i \in F \) and is given as a normalized set distance to a clustering \((H) \) of the foreground. \(D_i(e_i = 1) = \frac{\min_{k \in H \setminus \{i\}} ||f_i - f_k||}{\min_{k \in H \setminus \{i\}} ||f_i - f_k|| + \min_{k \in H \setminus \{i\}} ||f_j - f_k||} \) with the appearance function \(f \) and \(D_i(e_i = 0) = 1 - D_i(e_i = 1) \). \(V_{i,j} = \lambda |e_i - e_j| \exp(-\beta ||f_i - f_j||^2) \) is a smoothing term and goes over all adjacent pixel pairs. \(U_{i,j} = \mu |e_i - e_j| \exp(-\beta \gamma(i,j)^2) \) assures that pixels with similar appearance are treated similar. The main idea is that the neighbourhood graph is extended by the neighbourhood system \(\text{Nbh} \) which contains edges between the pixels \(i \) and \(j \) iff \(\gamma(i, j) < \epsilon \), where \(\gamma \) is a correlation based similarity measure, described in [11].

We applied RepSnapping with the parameters given in [12], namely: \(\mu = 10, \beta = 0.1, \lambda = 2 \) and \(\epsilon = 4 \). RepSnapping might easily be extended to the higher dimensional descriptor used in our algorithm but it would suffer from the same stability issues as AppProp.

5.2 The results

In figure 8 we present the comparison of the image segmentation step. You can see that our algorithm delivers artefact-free masks for both materials (8.b). The other three algorithms are more successful on the grey mesh material than on the metal material. An interesting result is, that the raw SVM delivers the second best results. We see the main reason in the descriptors: AppProp is numerically overcharged with the big number of descriptors, which results in this big amount of noise, and RepSnapping uses a correlation based approach to get rid of the artefacts.

5.3 Editing examples

In this section we want to present the resulting edits on four different materials (figure 9 - 12). RepSnapping has been published by Huang et al. in 2011 [12], and is based on the idea of co-segmentation [11]. It is specialized to cutting out repeated elements in natural images. The algorithm solves the energy functional:

\[E(e) := \sum_i D_i(e_i) + \sum_{i<j} V_{i,j}(e_i, e_j) \]

by the use of graph cuts [13]. Here \(D_i \) describes the probability that \(e_i \in F \) and is given as a normalized set distance to a clustering \((H) \) of the foreground. \(D_i(e_i = 1) = \frac{\min_{k \in H \setminus \{i\}} ||f_i - f_k||}{\min_{k \in H \setminus \{i\}} ||f_i - f_k|| + \min_{k \in H \setminus \{i\}} ||f_j - f_k||} \) with the appearance function \(f \) and \(D_i(e_i = 0) = 1 - D_i(e_i = 1) \). \(V_{i,j} = \lambda |e_i - e_j| \exp(-\beta ||f_i - f_j||^2) \) is a smoothing term and goes over all adjacent pixel pairs. \(U_{i,j} = \mu |e_i - e_j| \exp(-\beta \gamma(i,j)^2) \) assures that pixels with similar appearance are treated similar. The main idea is that the neighbourhood graph is extended by the neighbourhood system \(\text{Nbh} \) which contains edges between the pixels \(i \) and \(j \) iff \(\gamma(i, j) < \epsilon \), where \(\gamma \) is a correlation based similarity measure, described in [11].

We applied RepSnapping with the parameters given in [12], namely: \(\mu = 10, \beta = 0.1, \lambda = 2 \) and \(\epsilon = 4 \). RepSnapping might easily be extended to the higher dimensional descriptor used in our algorithm but it would suffer from the same stability issues as AppProp.

5.2 The results

In figure 8 we present the comparison of the image segmentation step. You can see that our algorithm delivers artefact-free masks for both materials (8.b). The other three algorithms are more successful on the grey mesh material than on the metal material. An interesting result is, that the raw SVM delivers the second best results. We see the main reason in the descriptors: AppProp is numerically overcharged with the big number of descriptors, which results in this big amount of noise, and RepSnapping uses a correlation based approach to get rid of the artefacts.
number of training samples, the SVM classification step took between 10 s and 3 min (paragraph 4.1.2). MSBP (paragraph 4.2.1) ran for about 45 s. Warping a tile with tps took about 0.03 s. Finding a principal tile took less than a second. So the overall processing time lay between 8 and 12 minutes.

For comparison: RepSnapping took 3 s, SVM took 10 s and AppProp took 40 s.

5.5 System
Computations have been done on an i5-2500 with a clock rate of 3.3 G/s and 8 GB RAM.

6 CONCLUSIONS AND FUTURE WORK
In this paper we demonstrated an algorithm to solve the task of extracting a repeating foreground pattern from a high dimensional reflectance representation map in a way, which is robust and reliable enough, to make additional optical debugging steps unnecessary. While the task is relatively simple on suitable materials, we could show, that the competing state of the art algorithms failed for difficult material probes. Our algorithm permits high quality segmentation and editing on complex materials.

Yet our algorithm is too slow for productive and industrial use. But many steps of the algorithm may be parallelized, particularly with respect to computations on the tiling, so that efficiency and responsiveness may be improved drastically.

7 REFERENCES
[19] Jan Meseth, Shawn Hempel, Andrea Weidlich,

