Completion and Reconstruction with Primitive Shapes

Ruwen Schnabel, Patrick Degener
and Reinhard Klein

University of Bonn
Introduction

- Acquisition
 - Tedious
 - Time consuming
 - Incomplete

- Final model
 - Complete
 - plausible
Introduction

• Man-made environment
 – Primitive shapes
 • Planes
 • Spheres
 • Cylinders
 • ...

• Useable for completion?
Introduction

• What can we reconstruct from this?
Primitive guided completion

• Extend detected primitives such that
 – Closed surface is created
 – Sharp features are extended and inferred

• Allows idealized reconstruction
 – Recover exact primitives
 – Ignore noise or surface detail
Primitive guided completion

- Difficulties
 - Inexact primitives
 - Missing primitives
 - Holes with multiple boundaries
 - Ambiguities
Primitive guided completion

- Difficulties
 - Inexact primitives
 - **Missing primitives**
 - Holes with multiple boundaries
 - Ambiguities
Primitive guided completion

- Difficulties
 - Inexact primitives
 - Missing primitives
 - Holes with multiple boundaries
 - Ambiguities
Primitive guided completion

- Difficulties
 - Inexact primitives
 - Missing primitives
 - Holes with multiple boundaries
 - Ambiguities
Primitive guided completion

• Variational approach
 – Novel energy functional incorporating primitives’ guidance
 – Arbitrary number of primitives
 – Arbitrarily complex intersections
 – Arbitrary number of hole boundaries
 – Plausible results for inexact/missing primitives

• Can create idealized reconstruction
 – Recovers sharp features
 – Robust to noise and outliers

• Can also reconstruct detailed geometry
 – Handle surface parts not approximated by primitives
Previous work

• Reverse engineering
 – Extensive use of primitives
 – Completion of small holes within a primitive

• Surface reconstruction
 – e.g. Curless, Levoy 96 Space Carving
 • Plausible only in relatively small holes, no structure propagation

• Surface completion
 – PDE based, energy minimization
 • smooth fillings suitable for small holes (no sharp features)
 – Example based
 • Needs fitting examples (requires large database)

• Range images
 – Fisher et al.: Completion involving at most two primitives per hole
Previous work

- Reverse engineering
 - Extensive use of primitives
 - Completion of small holes within a primitive

- Surface reconstruction
 - e.g. Curless, Levoy 96 Space Carving
 - Plausible only in relatively small holes, no structure propagation

- Surface completion
 - PDE based, energy minimization
 - smooth fillings suitable for small holes (no sharp features)
 - Example based
 - Needs fitting examples (requires large database)

- Range images
 - Fisher et al.: Completion involving at most two primitives per hole

Will not talk about primitive detection!
Primitive Detection

- **Finds on point-cloud** P
 - Set of **oriented** primitives
 - Subsets associated with a primitive (**support**)
 - Subset of remaining points

 $$P = S_1 \cup \ldots \cup S_A \cup R$$

- **RANSAC approach** [Schnabel et al 07]
 - planes, spheres, cylinders, cones, tori
 - Other methods possible
Variational Approach

- Sought: Minimal surface
- Intuition: Modify surface area
 - Cheap when on primitive
 - Expensive otherwise
- Reconstruction via energy minimization
 - Similar to Hornung and Kobbelt 06, Lempitsky and Boykov 07
Variational Approach

- Sought: Minimal surface
- Intuition: Modify surface area
 - Cheap when on primitive
 - Expensive otherwise
- Reconstruction via energy minimization
 - Similar to Hornung and Kobbelt 06, Lempitsky and Boykov 07

- Constraint: Reconstructed support of primitives must be connected
Primitive adherence

- Modified surface area
- Energy of surface S consists of three terms:

\[E(S) = E_a(S) - E_p(S) + E_c(S) \]

- $E_a(S)$ measures Surface area
- $E_p(S)$ measures primitive adherence
- $E_c(S)$ enforces inside/outside constraints
Primitive adherence

- Energy of surface S consists of three terms:

$$E(S) = E_a(S) - E_p(S) + E_c(S)$$

$$= \int_S dA - \int_S \mathbf{H}(\langle n | v \rangle) dA + E_c(S)$$

n Surface normal of S

$v : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ Vector field of primitives' normals (defined only on primitives)

$\mathbf{H}(x) := \begin{cases}
1 & x > 0 \\
0 & \text{otherwise}
\end{cases}$
Primitive adherence

\[E(S) = E_a(S) - E_p(S) + E_c(S) \]

\[= \int_S dA - \int_S H(\langle n|v\rangle) dA + E_c(S) \]

\[n \quad \text{Surface normal of } S \]

\[v : \mathbb{R}^3 \rightarrow \mathbb{R}^3 \quad \text{Vector field of primitives' normals (defined only on primitives)} \]

\[H(x) := \begin{cases}
1 & x > 0 \\
0 & \text{otherwise}
\end{cases} \]
Constraints

• Third term enforces inside/outside

\[E(S) = E_a(S) - E_p(S) + E_c(S) \]

\[E_c(S) = \int_{C_{in} \setminus S_{in}} \lambda dV + \int_{C_{out} \setminus S_{out}} \lambda dV \]

• Placement of constraints discussed later
Discretization

- Problem: Energy has many local minima
- Find discrete globally optimal solution with graph-cut
- For now: ignore connectivity constraint
- Define discrete edge cost on volumetric grid
Discretization

- Problem: Energy has **many local minima**
- Find **discrete globally optimal** solution with graph-cut
- For now: ignore connectivity constraint
- Define discrete edge cost on volumetric grid

\[
\hat{E} = \hat{E}_a - \hat{E}_p + \hat{E}_c
\]
Discretization

\[\hat{E} = \hat{E}_a - \hat{E}_p + \hat{E}_c \]

- \(\hat{E}_a \): Mimic surface area (after Boykov and Kolmogorov 2003)
- \(\hat{E}_p(e) := \begin{cases} \hat{E}_a(e) & \text{a } P_i \text{ intersects } e \text{ and } \langle n_{P_i} | e \rangle > 0 \\ 0 & \text{otherwise} \end{cases} \)
- \(\hat{E}_c \): Responsible for constraints
Discretization

\[\hat{E}_c \] Places constraints at endpoints of edges cut by primitives' support

\[\hat{E} = \hat{E}_a - \hat{E}_p + \hat{E}_c \]
Connectivity

• Up to now: Disregarded connectivity
Connectivity

- Each cut-edge is representative for local surface patch
- Cut-edges intersected by primitive must be connected
 - Must form **connected superset of original support**
- Cannot be found with single graph-cut
- Instead: Simple but effective greedy approach
Connectivity

• Each cut-edge is representative for local surface patch
• Cut-edges intersected by primitive must be connected
 – Must form **connected superset of original support**

• Iterate:
 – Compute reconstruction with graph-cut
 – Detect violations of connectivity constraint with graph traversal
 • Traversal originates in original support of primitive
 – Increase cost of violating edges
Surface extraction

- Using Kobbelt et al.’s [2001] Extended Marching Cubes
- Use primitives‘ normals and intersections at cut-edges

- Close to primitive transitions:
 - cut-edges intersected by multiple primitives
 - Which normal/intersection to pick?
Surface extraction

- Using Kobbelt et al.’s [2001] Extended Marching Cubes
- Use primitives' normals and intersections at cut-edges

- Close to primitive transitions:
 - cut-edges intersected by multiple primitives
 - Which normal/intersection to pick?

- Disambiguation
 - Multi-label MRF on cut-edges
Surface extraction
Detail reconstruction

- Completion with primitives is now possible
- Reconstruction adheres to primitives everywhere
Detail reconstruction

• Completion with primitives is now possible
• Reconstruction adheres to primitives everywhere
• How to handle detail?
Detail reconstruction

- Based on a approach by Lempitsky and Boykov [2007]
- Derive vector field u from input points

- New energy:

\[E(S) = E_a(S) - E_p(S) - \lambda E_u(S) \]

\[E_u(S) = \int_S \langle n | u \rangle dA = \int_{S_{in}} \text{div}(u) dV \]

- Minimum can also be found with graph-cut
Detail reconstruction

- Holes are still filled with primitives!
Results

Jia et al. [2007]
Results

38 primitives, approx. 2 min

Lempitsky and Boykov [2007]
Results

51 primitives, approx. 8 min
Results

171 primitives, approx. 9 min
Results
Conclusion

- Presented novel primitive guided reconstruction
 - Automatically completes holes by extending primitives
 - Plausibly resolves ambiguities
 - Reconstructions and extends sharp features
 - Infers sharp features in holes from primitive intersections
 - Can generate idealized or detailed model

- In the future
 - Other primitives could be possible (NURBS, database, ...)
 - Refit primitives
 - Extend to exploit (self-)similarity and regularity
 - Synthesize detail/color on extended primitives
Thank you!

• Some holes are not to be filled...